Sophie Morel

Sophie Morel
une illustration sous licence libre serait bienvenue
Biographie
Naissance
Nationalité
Formation
Activité
Autres informations
A travaillé pour
Directeur de thèse
Site web
Distinction
Prononciation

Sophie Morel est une mathématicienne française née en 1979. Directeur de recherche CNRS, professeure à l'École normale supérieure de Lyon, elle a auparavant été professeure à l'université de Princeton et à l'université Harvard. Elle a reçu en 2012 l'un des dix prix de la Société mathématique européenne.

Biographie

Née en 1979, elle étudie à Paris puis entre en classe préparatoire au lycée Louis-le-Grand, à l'issue desquelles elle intègre par la suite l'École normale supérieure de Paris (S 1999). Elle prépare ensuite une thèse dans les domaines de la géométrie algébrique, la théorie des représentations et la théorie des nombres, sous la direction de Gérard Laumon à l'Université Paris-Sud, qu'elle soutient en 2005[1]. Cette thèse, Complexes d'intersection des compactifications de Baily-Borel — le cas des groupes unitaires sur Q, qui traite d'un point non résolu du programme de Langlands, est jugée par l'un de ses collègues de Harvard comme une avancée notable.

Lauréate d'un Clay Research Fellowship de 2005 à 2011, elle devient également membre de l'Institute for Advanced Study à Princeton jusqu'en 2009. En , elle est nommée professeure au département de mathématiques de l'université Harvard, devenant la première femme à ce poste[2]. En 2012 elle est lauréate d'un des dix prix pour jeunes chercheurs de l'European Mathematical Society. Cette même année, elle rejoint l'université de Princeton[3]. En 2014 elle est lauréat du prix de recherche AWM–Microsoft en algèbre et théorie des nombres.

Publications notables

Prix et distinctions

Notes et références

  1. Clay Institute
  2. (en) « Mathematician gains dual appointments. Sophie Morel will join FAS, Radcliffe Institute », news.harvard.edu, 14 janvier 2010.
  3. [1]
  4. EMS Prize Winners, site de The European Mathematical Society.

Liens externes