Propriété de SchurEn mathématiques, on dit qu'un espace vectoriel normé X a la propriété de Schur si toute suite dans X qui converge faiblement converge fortement, c'est-à-dire en norme (la réciproque étant toujours vraie). Issai Schur a démontré en 1921[1] que l'espace ℓ1 des suites sommables possède cette propriété[2] bien que, comme dans tout espace normé de dimension infinie, sa topologie forte soit strictement plus fine que la faible. Notes et références
Articles connexes |