Lemme de ZassenhausEn algèbre, le lemme de Zassenhaus, ou lemme du papillon, est un résultat technique sur le treillis des sous-groupes d'un groupe, qui permet de démontrer le lemme de raffinement de Schreier (utile dans le théorème de Jordan-Hölder), selon lequel deux suites de composition d'un groupe donné possèdent toujours un raffinement commun[1]. Lemme — Soient un groupe, et deux sous-groupes de , un sous-groupe normal de , et un sous-groupe normal de . Alors est normal dans ), est normal dans , et les deux groupes quotients correspondants sont isomorphes. Plus formellement :
Ce lemme fut publié par Hans Zassenhaus en 1934[2]. Notes et références
|