Groupe hyperbolique

En théorie géométrique des groupes — une branche des mathématiques — un groupe hyperbolique, ou groupe à courbure négative, est un groupe de type fini muni d'une métrique des mots vérifiant certaines propriétés caractéristiques de la géométrie hyperbolique. Cette notion a été introduite et développée par Mikhaïl Gromov au début des années 1980. Il avait remarqué que beaucoup de résultats de Max Dehn concernant le groupe fondamental d'une surface de Riemann hyperbolique ne reposaient pas sur le fait qu'elle soit de dimension 2 ni même que ce soit une variété, mais restaient vrais dans un contexte beaucoup plus général. Dans un article de 1987[1] qui eut beaucoup de répercussions, Gromov proposa un vaste programme de recherche. Les idées et les ingrédients de base de la théorie viennent aussi du travail de George Mostow, William Thurston, James W. Cannon (en), Eliyahu Rips et bien d'autres.

Définitions

Il y a plusieurs manières de définir les groupes hyperboliques. Beaucoup d'entre elles utilisent le graphe de Cayley du groupe et définissent d'abord, pour toute constante δ > 0, une notion de groupe δ-hyperbolique ; un groupe hyperbolique est alors défini comme un groupe qui est δ-hyperbolique pour un certain δ. On passe d'une définition à l'autre en changeant si nécessaire la valeur de δ, mais les diverses définitions de groupe hyperbolique sont équivalentes.

Soient G un groupe engendré par un ensemble fini S et T son graphe de Cayley relativement à S. On munit T d'une distance géodésique pour laquelle chaque arête est isométrique à l'intervalle réel unité. Le groupe G agit naturellement sur T par isométries et de façon simplement transitive sur les sommets.

La première approche de l'hyperbolicité est basée sur la notion de triangle fin et est généralement attribuée à Rips. Dans tout espace métrique, un chemin d'un point x à un point y de longueur minimum est appelé segment géodésique et noté [x,y] ; un triangle géodésique est constitué de trois points x, y, z — ses sommets — et de trois segments géodésiques [x,y], [y,z] et [z,x] — ses côtés. Il est dit δ-fin, pour un certain δ > 0 fixé, si chacun de ses côtés est contenu dans un δ-voisinage des deux autres :

Un espace métrique est dit δ-hyperbolique (en) si tous ses triangles géodésiques sont δ-fins.

Le groupe G est dit δ-hyperbolique si son graphe de Cayley est un espace δ-hyperbolique. Contrairement aux apparences, cette notion de δ-hyperbolicité du groupe ne dépend pas du choix de l'ensemble S de générateurs, car elle est invariante par quasi-isométries (en).

Les groupes hyperboliques peuvent aussi être caractérisés comme les groupes G munis d'une action proprement discontinue par isométries sur un espace métrique propre, géodésique et hyperbolique X, de telle façon que l'espace (métrique) quotient X/G soit de diamètre fini.

Exemples de groupes hyperboliques

Exemples de groupes non hyperboliques

Caractérisation cohomologique

En 2002, I. Mineyev a démontré[4] que les groupes hyperboliques sont exactement les groupes de présentation finie pour lesquels le morphisme de comparaison, de la cohomologie bornée du groupe vers sa cohomologie usuelle, est surjectif en tous degrés ou, ce qui est équivalent, en degré 2.

Propriétés

Les groupes hyperboliques ont un problème du mot décidable. Ils sont automatiques (car biautomatiques[5]) et le sont même « fortement géodésiquement », c'est-à-dire qu'il existe sur le groupe un automate fini qui reconnaît l'ensemble des mots géodésiques.

François Dahmani et Vincent Guirardel ont démontré en 2010[6] que le problème de l'isomorphisme marqué est décidable pour les groupes hyperboliques, donc aussi le problème de l'isomorphisme (en), le problème de la conjugaison (en) et le problème de Whitehead des orbites dans Gn par automorphismes de G.

Généralisations

Une généralisation de la notion de groupe hyperbolique importante est celle de groupe relativement hyperbolique (en). Elle est motivée par exemple par l'étude du groupe fondamental des variétés hyperboliques non compactes de volume fini (en particulier celles qui sont des compléments de nœuds), car ce groupe n'est généralement pas hyperbolique au sens de Gromov.

Un groupe G est dit hyperbolique relativement à un sous-groupe H si, après avoir contracté le graphe de Cayley de G le long des classes suivant H, l'espace métrique obtenu est δ-hyperbolique et vérifie une condition technique supplémentaire, qui assure que toutes les quasi-géodésiques joignant deux points passent approximativement par la même collection de H-classes et entrent et sortent de ces classes en approximativement les mêmes points.

Notes et références

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Hyperbolic group » (voir la liste des auteurs).
  1. (en) Mikhaïl Gromov, « Hyperbolic groups », dans Essays in group theory, Springer, coll. « MSRI Publ. » (no 8), , p. 75-263.
  2. É. Ghys et P. de la Harpe (éd.), Sur les groupes hyperboliques d'après Mikhael Gromov, coll. « Progress in Mathematics » (no 83), Birkhäuser, 1990 (ISBN 978-0-8176-3508-4), chap. 8, th. 37.
  3. (en) Martin R. Bridson et André Haefliger, Metric spaces of non-positive curvature, Springer, coll. « Grund. math. Wiss. » (no 319), (ISBN 978-3-540-64324-1), chap. 3.Γ, cor. 3.10.
  4. (en) Igor Mineyev, « Bounded cohomology characterizes hyperbolic groups », Quart. J. Math., vol. 53, 2002, p. 59-73.
  5. (en) Ruth Charney, « Artin groups of finite type are biautomatic », Math. Ann., vol. 292,‎ , p. 671-683 (lire en ligne).
  6. (en) F. Dahmani et V. Guirardel, « The isomorphism problem for all hyperbolic groups », Geom. Funct. Anal., vol. 21, no 2,‎ , p. 223-300, preprint sur arXiv:1002.2590.

Bibliographie complémentaire

  • Michel Coornaert, Thomas Delzant et Athanase Papadopoulos, Géométrie et théorie des groupes : les groupes hyperboliques de Gromov, Lecture Notes in Mathematics, no 1441, Springer, 1990 (ISBN 978-3-540-52977-4)
  • (en) Michel Coornaert et Athanase Papadopoulos, Symbolic dynamics and hyperbolic groups, Lecture Notes in Mathematics, no 1539, Springer, 1993 (ISBN 978-3-540-56499-7)