La conjecture stipule que: étant donné ε > 0, il existe une constante C ( ε ) telle que pour toute courbe elliptique E définie sur Q avec un discriminant minimal Δ et un conducteur f, nous avons
Conjecture de Szpiro modifiée
La conjecture de Szpiro modifiée déclare que: étant donné ε > 0, il existe une constante C ( ε ) telle que pour toute courbe elliptique E définie sur Q avec pour invariants c4, c6 et pour conducteur f (en utilisant la notation de l'algorithme de Tate(en)), nous avons
Preuves revendiquées
En août 2012, Shinichi Mochizuki revendique une preuve de la conjecture de Szpiro en développant une nouvelle théorie appelée théorie de Teichmüller inter-universelle(en) (IUTT)[1]. Cependant, les articles n'ont pas été acceptés par la communauté mathématique comme fournissant une preuve de la conjecture[2],[3],[4], avec Peter Scholze et Jakob Stix concluant en mars 2018 que l'écart était « si grave que ... de petites modifications ne sauvera pas la stratégie de preuve »[5],[6],[7].
↑(en) Erica Klarreich, « Titans of Mathematics Clash Over Epic Proof of ABC Conjecture », Quanta Magazine, (lire en ligne).
↑« March 2018 Discussions on IUTeich » (consulté le ) Web-page by Mochizuki describing discussions and linking consequent publications and supplementary material