Conjecture de PainlevéEn physique, et plus précisément en mécanique céleste, la conjecture de Painlevé, émise par Paul Painlevé en 1895, est une conjecture concernant le problème à N corps, affirmant que, dans le cadre de la mécanique newtonienne, il existe des singularités (autres que des collisions) pour certaines configurations dès que N ≥ 4[1],[2], c'est-à-dire que, pour ces configurations, certains corps s’éloignent à l'infini en un temps fini. Elle est devenue un théorème lorsque de telles configurations furent construites en 1988 par Jeff Xia dans le cas N ≥ 5[3],[4], et en 2014 par Jinxin Xue dans le cas N ≥ 4[5]. Énoncé de la conjectureSoit une solution du problème à n corps défini par (où est le vecteur des positions des corps, est le vecteur de leurs quantités de mouvement, M est la matrice des couples de masses et U désigne le potentiel gravitationnel) ; elle est dite singulière s'il existe une séquence de temps convergeant vers un temps fini où . Autrement dit, les forces et les accélérations de certains corps deviennent infinies à un moment donné dans le temps. Une singularité de collision se produit si tend vers une limite définie lorsque . Si la limite n'existe pas, la singularité est appelée pseudo - collision ou singularité de non-collision. Paul Painlevé a montré que pour n = 3 toute solution avec une singularité en temps fini subit une singularité de collision. Cependant, il n'a pas réussi à étendre ce résultat au-delà de 3 corps. Ses conférences de Stockholm de 1895 se terminent par la conjecture que : Pour n ≥ 4 le problème à n corps admet des singularités sans collision[6],[7]. Progrès vers la résolution de la conjectureEdvard Hugo von Zeipel a prouvé en 1908 que s'il existe une singularité de collision, alors tend vers une limite définie lorsque , où est le moment d'inertie[8]. Cela implique qu'une condition nécessaire pour une singularité de non-collision est que la vitesse d'au moins une particule devient illimitée (puisque les positions restent finies jusqu'à ce point)[1]. Mather et McGehee ont réussi à prouver en 1975 qu'une singularité de non-collision peut se produire dans le problème colinéaire à 4 corps (c'est-à-dire avec tous les corps sur une ligne), mais seulement après un nombre infini de collisions binaires (régularisées)[9]. Donald Gene Saari a prouvé en 1977 que pour presque toutes (au sens de la mesure de Lebesgue) les conditions initiales dans le plan ou l'espace pour les problèmes à 2, 3 et 4 corps, il existe des solutions sans singularité[10]. En 1984, Joe Gerver a donné un argument pour une singularité sans collision dans le problème plan à 5 corps sans collisions[11] (il a par la suite, partant de cet argument, obtenu une preuve rigoureuse pour le cas de 6 corps[12]). Enfin, dans sa thèse de doctorat de 1988, Jeff Xia a exhibé une configuration à 5 corps qui connaît une singularité sans collision[3],[4].En 2003, Joe Gerver a donné un modèle heuristique pour l'existence de singularités à 4 corps[13]. Dans sa thèse de doctorat de 2013 à l'Université du Maryland, Jinxin Xue a envisagé un modèle simplifié pour le cas du problème planaire à quatre corps. Sur la base du modèle de Gerver de 2003, il a prouvé qu'il existe un ensemble de conditions initiales (formant un ensemble de Cantor) qui conduisent à des solutions du système hamiltonien dont les vitesses sont accélérées à l'infini en un temps fini en évitant toutes les collisions antérieures. En 2014, Xue a étendu ses travaux précédents et a prouvé la conjecture pour n = 4[14],[5]. Références
|