Conjecture de CarmichaelEn mathématiques, la conjecture de Carmichael concerne la multiplicité des valeurs de l'indicatrice d'Euler φ (n), dénombrant le nombre d'entiers inférieur premier avec n. Elle énonce que, pour chaque n, il y a au moins un autre entier m ≠ n tel que φ (m) = φ (n). Robert Carmichael a énoncé cette conjecture pour la première fois en 1907, en tant que théorème, pensant l'avoir démontrée. Il la déclara ensuite en tant que problème ouvert en 1922. ExemplesL'indicatrice φ (n) est égale à 2 lorsque n vaut 3, 4 ou 6. De même, l'indicatrice est égal à 4 lorsque n est l'une des quatre valeurs 5, 8, 10 et 12, et vaut 6 lorsque n est l'une des quatre valeurs 7, 9, 14 et 18. Dans chaque cas, il existe plus d'une valeur de n ayant la même valeur φ(n). La conjecture affirme ainsi que cela est vrai pour chaque n.
Bornes inférieuresIl existe bornes inférieures assez élevées qui sont relativement aisées à déterminer. Carmichael a prouvé que tout contre-exemple de sa conjecture doit être supérieur à 1037, et Victor Klee a étendu ce résultat à 10 400. Une borne inférieure de a été donnée par Schlafly et Wagon, et une autre de a été déterminé par Kevin Ford en 1998[1]. Les méthodes permettant d'atteindre de tels bornes inférieures reposent sur quelques résultats clés de Klee qui permettent de montrer que le plus petit contre-exemple doit être divisible par les carrés des nombres premiers divisant son indicatrice d'Euler. Les résultats de Klee impliquent que 8 et les nombres premiers de Fermat (nombres premiers de la forme 2k + 1) excluant 3 ne divise pas le plus petit contre-exemple. Par conséquent, prouver la conjecture équivaut à prouver que la conjecture est vraie pour tous les entiers congruents à 4 modulo 8. Autres résultatsFord a également prouvé que s'il existe un contre-exemple à cette conjecture, alors une proportion positive (au sens de densité asymptotique) des nombres entiers sont également contre-exemples[1]. Bien que la conjecture soit largement acceptée, Carl Pomerance a donné une condition suffisante pour qu'un entier n soit un contre-exemple de la conjecture (Pomerance 1974). Selon cette dernière, n est un contre-exemple si pour tout premier p tel que p − 1 divise φ(n), p 2 divise n. Cependant, Pomerance a montré que l'existence d'un tel entier est très improbable. En effet, on peut montrer que si les k premiers p sont congruents à 1 (mod q) (où q est un nombre premier) et tous inférieurs à q k +1, n sera en fait divisible par tout nombre premier, ce qui n'est pas possible. Cependant, montrer que le contre-exemple de Pomerance n'existe pas ne permet pas prouver la conjecture de Carmichael. Cependant, s'il existe, il existe une infinité de contre-exemples, comme nous l'avons vu. Une autre façon de formuler la conjecture de Carmichael est que, si A(f) désigne le nombre d'entiers positifs n pour lesquels φ(n) = f, alors A(f) ne vaut jamais 1. Wacław Sierpiński a conjecturé que chaque entier positif autre que 1 apparaît comme une valeur de A(f), celle-ci a été prouvée en 1999 par Kevin Ford[2]. Notes
Références
Liens externes
|