Algorithme mémétiqueLes algorithmes mémétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode de résolution pour résoudre le problème de manière exacte en un temps raisonnable. Les algorithmes mémétiques sont nés d'une hybridation entre les algorithmes génétiques et les algorithmes de recherche locale. Ils utilisent le même processus de résolution que les algorithmes génétiques mais utilisent un opérateur de recherche locale après celui de mutation. L'intérêt de cette classe d'algorithme est l'apport de la diversification de la partie génétique accompagnée par l'intensification de la recherche locale. On peut classer les algorithmes mémétiques dans les métaheuristiques. PrincipeLe principe général des algorithmes mémétiques est semblable à celui des algorithmes génétiques à la différence près qu'un opérateur de recherche locale est ajouté après celui de mutation. Ce dernier permet d'ajouter une intensification à la diversification apportée par le principe de l'algorithme génétique. Un algorithme génétique a besoin pour son fonctionnement d'une population initiale. Celle-ci peut-être construite de manière aléatoire ou de façon gloutonne. L'algorithme itère différentes étapes ensuite jusqu'à un critère d'arrêt propre à chaque problème/utilisateur :
Schéma récapitulatif
Voir aussiBibliographie
|