Weka (aprendizaje automático)
Weka (Waikato Environment for Knowledge Analysis, en español «entorno para análisis del conocimiento de la Universidad de Waikato») es una plataforma de software para el aprendizaje automático y la minería de datos escrito en Java y desarrollado en la Universidad de Waikato. Weka es software libre distribuido bajo la licencia GNU-GPL. Breve historia
DescripciónEl paquete Weka[4] contiene una colección de herramientas de visualización y algoritmos para análisis de datos y modelado predictivo, unidos a una interfaz gráfica de usuario para acceder fácilmente a sus funcionalidades. La versión original de Weka fue un front-end en TCL/TK para modelar algoritmos implementados en otros lenguajes de programación, más unas utilidades para preprocesamiento de datos desarrolladas en C para hacer experimentos de aprendizaje automático. Esta versión original se diseñó inicialmente como herramienta para analizar datos procedentes del dominio de la agricultura,[5][6] pero la versión más reciente basada en Java (WEKA 3), que empezó a desarrollarse en 1997, se utiliza en muchas y muy diferentes áreas, en particular con finalidades docentes y de investigación. Características de WekaLas características de Weka son:
Weka soporta varias tareas estándar de minería de datos, especialmente, preprocesamiento de datos, clustering, clasificación, regresión, visualización, y selección. Todas las técnicas de Weka se fundamentan en la asunción de que los datos están disponibles en un fichero plano (flat file) o una relación, en la que cada registro de datos está descrito por un número fijo de atributos (normalmente numéricos o nominales, aunque también se soportan otros tipos). Weka también proporciona acceso a bases de datos vía SQL gracias a la conexión JDBC (Java Database Connectivity) y puede procesar el resultado devuelto por una consulta hecha a la base de datos. No puede realizar minería de datos multi-relacional, pero existen aplicaciones que pueden convertir una colección de tablas relacionadas de una base de datos en una única tabla que ya puede ser procesada con Weka.[7] Un área importante que actualmente no cubren los algoritmos incluidos en Weka es el modelado de secuencias. La interfaz de usuarioAl ejecutar la aplicación nos aparece el selector de interfaz de Weka (Weka GUI Chooser) que da la opción de seleccionar entre cuatro posibles interfaces de usuario para acceder a las funcionalidades del programa, éstas son Simple CLI, Explorer, Experimenter y Knowledge Flow. Simple CLISimple CLI es la abreviatura de Simple Command-Line Interface («interfaz simple de línea de comandos»). Se trata de una consola que permite acceder a todas las opciones de Weka desde línea de comandos. ExplorerLa interfaz Explorer (Explorador) dispone de varios paneles que dan acceso a los componentes principales del banco de trabajo:
ExperimenterLa interfaz Experimenter («experimentador») permite la comparación sistemática de una ejecución de los algoritmos predictivos de Weka sobre una colección de conjuntos de datos. Knowledge FlowKnowledge Flow («flujo de conocimiento») es una interfaz que en esencia implementa las mismas funciones que Explorer, y además permite "arrastrar y soltar". También puede ofrecer aprendizaje incremental. Aplicaciones relacionadas
Véase también
Referencias
Enlaces externosGenerales
Ejemplos de aplicaciones
Versiones extendidas |