Presurización de cabinaLa presurización de la cabina aérea es el bombeo activo de aire comprimido en la cabina de una aeronave para garantizar la seguridad y confort de los ocupantes. Es necesario cuando un avión alcanza una gran altitud, ya que la presión atmosférica natural es demasiado baja como para suministrar el suficiente oxígeno a los ocupantes. Sin la presurización se puede sufrir mal de montaña o incluso de hipoxia. Vuelo despresurizadoUna falta de oxígeno puede desembocar en hipoxia por la reducción de tensión de oxígeno en los alvéolos. En algunos casos, especialmente personas con problemas de corazón o pulmones, los síntomas pueden comenzar en altitudes relativamente bajas de 1500 m (5000 pies) sobre el nivel del mar, aunque la mayoría pueden soportar altitudes de 2500 m (8000 pies) sin ningún síntoma. A esta altura la respiración incorpora un 25% menos de oxígeno que al nivel del mar.[1] Los pasajeros también pueden fatigarse o tener dolor de cabeza a medida que el aparato se eleva. Las reacciones del cuerpo pueden verse entorpecidas pudiendo llegar a una pérdida del conocimiento. Vuelos a una altitud estable de más de 3000 m (10 000 pies) precisan, por regla general, oxígeno adicional (por medio de una cánula nasal o una máscara de oxígeno o un traje de presión). Vuelo presurizadoLas aeronaves que realizan vuelos rutinarios sobre 3000 m (10,000 ft) están, por lo general, equipados con un sistema de oxígeno alimentado por medio de máscaras o cánulas (estas últimas típicamente para naves pequeñas), o están presurizadas por un sistema de control ambiental (del inglés Environmental Control System, ECS) usando gas suministrado por un compresor o aire comprimido del motor. Este aire está precalentado y es extraído a una temperatura de aprox. 200 °C (392 °F), y el frío por medio de un tránsito a través de un intercambiador de calor, y la máquina de aire en ciclo (conocido en el mundo de la aviación comercial como the packs system). Las aeronaves más modernas tienen un controlador electrónico de doble canal para mantener la presurización junto con un sistema redundante manual. Estos sistemas mantienen una presión de aire equivalente a 2.500 m (8.000 pies2) o menor, incluso durante el vuelo a una altitud de más de 13 000 m (43.000 pies2). Las aeronaves cuentan con una válvula de alivio de presión en casos de exceso de presión en la cabina. Esto se hace para proteger la estructura de la aeronave de una carga excesiva. Normalmente, el diferencial de presión máxima entre la cabina y el aire exterior es 52–55 kPa (7.5–8 psi)). Si la cabina se mantuviera a la presurización a nivel del mar para luego subir a una altitud de 10.700 m (35.000 pies) o más, el diferencial de presurización sería mayor que 60 kPa (9 psi) y la estructura del avión sufriría una carga excesiva. El método tradicional de extracción de aire comprimido del motor tiene como contrapartida un desgaste de la eficiencia energética. Algunas aeronaves, como por ejemplo el Boeing 787, usan compresores eléctricos para llevar a cabo la presurización. Esto permite una eficiencia mayor de propulsión. En la medida en que la aeronave se presuriza y descomprime, algunos pasajeros experimentan molestias, debido a la expansión o compresión de los gases corporales según los cambios de presión de la cabina. Los problemas más comunes ocurren con gas atrapado en el aparato digestivo, el oído medio y los senos nasales. Nótese que estos efectos dentro de una cabina presurizada no se deben al hecho de que la aeronave aumente o reduzca la altitud, sino a los cambios de presión que se aplican en la cabina. Si una aeronave presurizada sufre un fallo de presurización sobre 3.000 m (10.000 pies) entonces puede hablarse de una situación de emergencia. En ese caso la aeronave debe comenzar un descenso de emergencia y las máscaras de oxígeno deben activarse para todos los ocupantes. En la mayoría de aviones de pasajeros (como por ejemplo en el Boeing 737[2]), las máscaras de oxígeno de los pasajeros se activan de forma automática si la presión de la cabina se reduce por debajo de la presión equivalente de la atmósfera a 4.500 m (14.000 pies) (es decir, si la "altitud de la cabina" sube de los 14.000 pies).[3] Historia y uso de las cabinas de presurizaciónAntes de la Segunda Guerra Mundial el Boeing 307 Stratoliner ya tenía una cabina presurizada, si bien, solo se produjeron diez de estos aparatos. Los aviones con motores de pistón de la Segunda Guerra Mundial volaban a menudo a gran altura sin estar presurizadas: por ello los pilotos usaban máscaras de oxígeno. Esto era un problema en bombarderos de mayor tamaño, pues contaban con una tripulación a bordo mucho más numerosa. Por ello, el primer bombardero con cabina presurizada (para la zona de pasajeros) no tardó en llegar, fue el B-29 Superfortress. El sistema de control de la presión de la cabina lo desarrolló Garrett AiResearch Manufacturing Company, sirviéndose en parte de licencias de Boeing para el Stratoliner.[4] Aerolíneas con aparatos de motores de pistón de la posguerra, tales como el Lockheed Constellation ampliaron esta tecnología al uso civil y, dado que las aerolíneas de jets estaban diseñadas para operar a gran altitud, todos ellos cuentan con esta tecnología. La mayoría de aeronaves con turbohélices también disponen de cabinas presurizadas para operar a media – gran altura. Algunos aviones privados de menor tamaño con motor de pistón también cuentan con esta tecnología. La avioneta Cessna P210, introducida en 1978, fue la primera avioneta con cabina presurizada que logró un éxito comercial.[5] La diferencial de presión máxima entre la cabina de la P210 y el aire exterior era 23 kPa (3,35 psi). Pérdida de presurizaciónUna de las consecuencias de la despresurización de una cabina es que la presión dentro del aeroplano pueda ser 70 kPa (10 psi), mientras que la presión exterior sea solo 15 kPa (2 psi). Lo que normalmente sería un orificio inofensivo, con esta diferencia de presión va a generar un intenso chirrido con salidas de aire a velocidades supersónicas. Un orificio de una longitud de metro y medio despresurizaría una aeronave jet en fracciones de segundo. Se denomina descompresión rápida al cambio en la presión de la cabina en la que los pulmones se pueden descomprimir más rápido que la cabina. Este tipo de descompresión en una aeronave comercial no ocurre a menudo pero de ocurrir es peligrosa por objetos voladores, o incluso por la posible fuerza de atracción a la fisura si se está cerca de ella. También puede ocurrir una deformación interna de los paneles y del suelo. Se denomina descompresión explosiva al cambio de presión de la cabina más rápido de lo que pueden hacerlo los pulmones (menos de 0.5 segundos). Este tipo de descompresión es potencialmente peligrosa para los pulmones y se corre también el riesgo de ser golpeado por objetos voladores. Una descompresión gradual o lenta es peligrosa porque puede que no se detecte. El accidente de Vuelo 522 de Helios Airways en 2005 es un buen ejemplo.[6] Los sistemas de advertencia pueden ser ignorados, malinterpretados o fallar, y por ello el reconocimiento autónomo de los efectos inherentes de la hipoxia puede verse reducido a la experiencia o al entrenamiento. Desafortunadamente en la mayoría de los países este tipo de formación se ha reducido casi exclusivamente al sector militar en una cámara hipobárica con riesgos del síndrome de descompresión y barotrauma. Los nuevos sistemas de respiración de oxígeno reducido[7] son más accesibles y seguros y proveen una experiencia práctica valiosa.[8] Un aumento de la oferta de este tipo de entrenamientos por las autoridades reguladoras fomentaría el conocimiento de la hipoxia y, así, la seguridad en el sector da la aviación. La hipoxia ocasiona una pérdida de conciencia si no se suministra oxígeno de emergencia. El tiempo que transcurre hasta la pérdida de consciencia en un entorno con escasez de oxígeno varía con la altitud. Además, la temperatura del aire descenderá debido a la expansión corriendo del peligro de congelamiento. A lo contrario de lo que se pueda creer por películas de James Bond como Goldfinger, los pasajeros situados a escasos metros del orificio corren más riesgo de padecer hipoxia que de ser propulsados fuera de la cabina. Consecuencias de la presurización de la cabina en el fuselaje de la aeronaveCuando la aeronave se presuriza y despresuriza la capa de metal del aeroplano se expande y contrae, respectivamente, produciéndose la fatiga del metal (según la ley de Hooke). Las aeronaves modernas están diseñadas para resistir estos ciclos de compresión, pero algunas naves más antiguas (ej. De Havilland Comet) tuvieron accidentes fatales por no estar lo suficientemente preparadas frente a este fenómeno. Consecuencias de la presurización de la cabina en el cuerpo humano
Junto con los problemas que puedan padecer algunos pasajeros, la presión de la cabina equivalente a un altitud de 2.500 m (8.000 pies) de la mayoría de vuelos contribuye a la fatiga que se sufre en vuelos largos. El Boeing 787 airliner cuenta con una presurización equivalente a 1.800 m (6.000 pies), que según Boeing aumentará considerablemente el confort de los pasajeros. El Airbus A350 podría ir incluso más allá considerando una presurización equivalente a 1.500 m (5.000 pies).[cita requerida] Puede haber personas que padezcan síntomas del mal de la montaña a pesar de la presión de la cabina. Incidentes notables
Ficción
Primeras aeronaves con sistemas de presurizaciónVéase tambiénReferencias
Bibliografía
|