Método de Box-MullerEl método de Box-Muller (nombrado así por sus inventores George Edward Pelham Box y Mervin Edgar Müller 1958)[1] es un método de generación de pares de números aleatorios independientes con distribución normal "estándar" (esperanza cero y varianza unitaria), a partir de una fuente de números aleatorios uniformemente distribuidos. Se lo encuentra expresado de dos formas. La forma básica es la que desarrollaron Box y Müller, y toma dos muestras de la distribución uniforme en el intervalo (0, 1] y las transforma en dos muestras con distribución normal. El método polar toma dos muestras de un intervalo distinto, [−1, +1], y las transforma a dos muestras normalmente distribuidas sin utilizar las funciones seno o coseno. También es posible utilizar el método de la transformada inversa para generar números aleatorios distribuidos normalmente; en comparación el método de Box-Müller posee la ventaja de ser más eficiente desde un punto de vista computacional.[2] También es posible utilizar el algoritmo Ziggurat que es más eficiente. Forma básicaSe supone que U1 y U2 son variables aleatorias independientes que están uniformemente distribuidas en el intervalo (0, 1]. Sea y Entonces Z0 y Z1 son variables aleatorias independentes con una distribución normal con desviación típica 1. La demostración[3] se basa en el hecho que, en un sistema cartesiano bidimensional donde las coordenadas X e Y son dadas por dos variables aleatorias independientes y distribuidas normalmente, las variables aleatorias para R2 y Θ (indicadas previamente) en las coordenadas polares correspondientes también son independientes y poseen las expresiones: y Método polarLa forma polar Devroye[4] se le atribuye a Marsaglia. También es mencionada en Carter, aunque sin serle atribuida a nadie en particular.[5] Dados u y v, independentes y uniformemente distribuidos en un intervalo cerrado [−1, +1], sea s = R2 = u2 + v2. (Donde obviamente .) Si s = 0 o s > 1, se eliminan u y v y se prueba con otro par (u, v). Se continúa con el proceso hasta que se encuentra un par con s en el intervalo abierto (0, 1). Dado que u y v están uniformemente distribuidos y como sólo se admiten puntos contenidos en el círculo unitario, los valores de s también se encontraran uniformemente distribuidos en el intervalo abierto (0, 1). Esto último se puede verificar si se calcula la función de densidad de probabilidad para s en el intervalo (0, 1). Lo que no es otra cosa que el área del círculo de radio dividido por . A partir de esto se puede encontrar la función de densidad de probabilidad que tenga un valor constante de 1 en el intervalo (0, 1). En forma similar, el ángulo θ dividido por está distribuido uniformemente en el intervalo abierto (0, 1) e independiente de s. Referencias
Enlaces externos
|