Juego topológicoUn juego topológico es un juego infinito de información perfecta jugado entre dos jugadores en un espacio topológico. Los jugadores eligen objetos con propiedades topológicas como puntos, conjuntos abiertos, conjuntos cerrados y cubiertas abiertas. El tiempo es generalmente discreto, pero las obras pueden tener una duración transfinita y se han propuesto extensiones al tiempo continuo. Las condiciones para que un jugador gane pueden involucrar nociones como el cierre topológico y la convergencia. Resulta que algunas construcciones topológicas fundamentales tienen una contraparte natural en los juegos topológicos; ejemplos de estos son la propiedad de Baire, espacios de Baire, propiedades de completitud y convergencia, propiedades de separación, propiedades de cobertura y base, imágenes continuas, conjuntos de Suslin y espacios singulares. Al mismo tiempo, algunas propiedades topológicas que surgen naturalmente en los juegos topológicos pueden generalizarse más allá de un contexto de teoría de juegos: en virtud de esta dualidad, los juegos topológicos se han utilizado ampliamente para describir nuevas propiedades de los espacios topológicos y para poner propiedades conocidas bajo una luz diferente. También existen estrechos vínculos con los principios de selección. El término juego topológico fue introducido por primera vez por Claude Berge,[1][2][3] quien definió las ideas básicas y el formalismo en analogía con los grupos topológicos. Un significado diferente para el juego topológico, el concepto de “propiedades topológicas definidas por juegos”, fue introducido en el trabajo de Rastislav Telgársky,[4] y más tarde “espacios definidos por juegos topológicos”;[5] este enfoque se basa en analogías con juegos matriciales, juegos diferenciales y juegos estadísticos, y define y estudia juegos topológicos dentro de la topología. Después de más de 35 años, el término “juego topológico” se generalizó y apareció en varios cientos de publicaciones. El trabajo de encuesta de Telgársky[6] enfatiza el origen de los juegos topológicos del juego de Banach–Mazur. Hay otros dos significados de juegos topológicos, pero estos se usan con menos frecuencia:
Configuración básica para un juego topológicoSe pueden definir muchos marcos para infinitos juegos posicionales de información perfecta. La configuración típica es un juego entre dos jugadores, I y II, que alternativamente recogen subconjuntos de un espacio topológico X. En la nª ronda, el jugador I juega un subconjunto In de X, y el jugador II responde con un subconjunto Jn. Hay una ronda para cada número natural n, y después de que se juegan todas las rondas, el jugador I gana si la secuencia
satisface alguna propiedad y, de lo contrario, el jugador II gana. El juego está definido por la propiedad objetivo y los movimientos permitidos en cada paso. Por ejemplo, en el juego de Banach–Mazur BM ( X ), los movimientos permitidos son subconjuntos abiertos no vacíos del movimiento anterior, y el jugador I gana si . Esta configuración típica se puede modificar de varias formas. Por ejemplo, en lugar de ser un subconjunto de X, cada movimiento puede consistir en un par donde y . Alternativamente, la secuencia de movimientos puede tener una longitud de algún número ordinal distinto de ω1. Definiciones y notación
El juego Banach – MazurEl primer juego topológico estudiado fue el juego de Banach-Mazur, que es un ejemplo motivador de las conexiones entre las nociones de la teoría de juegos y las propiedades topológicas. Sea Y un espacio topológico y sea X un subconjunto de Y, denominado conjunto ganador. El jugador I comienza el juego eligiendo un subconjunto abierto no vacío , y el jugador II responde con un subconjunto abierto no vacío . El juego continúa de esta manera, y los jugadores eligen alternativamente un subconjunto abierto no vacío del juego anterior. Después de una secuencia infinita de movimientos, uno para cada número natural, el juego termina y yo gano si y solo si Las conexiones topológicas y teóricas del juego demostradas por el juego incluyen:
Otros juegos topológicosAlgunos otros juegos topológicos notables son:
Se han introducido muchos más juegos a lo largo de los años, para estudiar, entre otros: el principio de correducción de Kuratowski; propiedades de separación y reducción de conjuntos en clases proyectivas cercanas; tamices Luzin; teoría de conjuntos descriptiva invariante; conjuntos de Suslin; el teorema de la gráfica cerrada; espacios palmeados; MP-espacios; el axioma de elección; funciones recursivas. Los juegos topológicos también se han relacionado con ideas en lógica matemática, teoría de modelos, fórmulas infinitamente largas, cadenas infinitas de cuantificadores alternos, ultrafiltros, conjuntos parcialmente ordenados y el número de colores de grafos infinitos. Para obtener una lista más larga y una descripción más detallada, consulte el documento de encuesta de Telgársky de 1987.[6] Véase tambiénReferencias
|