HomoteciaUna homotecia es una transformación geométrica que puede entenderse como un cambio de escala, en relación con un punto fijo, denominado centro. Formalmente, es un caso particular de homología, con eje impropio y centro el de la propia homología. Así, dado un punto fijo O de un plano y un número real k distinto de cero, se llama homotecia a la transformación en la que a todo punto P del plano le corresponde otro punto P’, alineado con O y con P, de forma que OP’/OP = k. Esta transformación se llama homotecia de centro O y razón k, y las figuras que se corresponden, figuras homotéticas. DefiniciónSea B un espacio vectorial sobre un cuerpo . Sea X un elemento (visto como un punto) de E. La homotecía de centro C y de razón k, denotada envía un punto M del espacio sobre el punto M' tal que:
La anterior puede también ser una transformación afín de la forma:
La anterior relación puede escribirse vectorialmente en el plano como: Donde: , y . La homotecia es una transformación geométrica de una figura, a la cual se le realiza una transformación lineal y una traslación, y por consiguiente conserva:
Cuando K es mayor que cero es k mayor Cuando el cuerpo de escalares son los Reales, se cumple que:
Más aún:
Homotecias en el plano realEn esta sección, los escalares serán números reales. Una homotecia generalizada en el plano es una transformación del plano en sí mismo en donde una recta y su homóloga son paralelas. De esta definición, se sigue fácilmente que las homotecias conservan ángulos, es decir son transformaciones conformes del plano, que el conjunto de homotecias forman un 'grupo' y que las traslaciones son casos particulares de las homotecias. Consideremos la homotecia en la cual la recta OA se transforma en la recta O'B, siendo O' el homólogo de O y B el homólogo de A. Necesariamente, las rectas OO' y AB son invariantes en esta homotecia y el punto H1, centro de la homotecia, es invariante. En esta homotecia la circunferencia de centro O y radio OA se transforma en la circunferencia de centro O' y de radio O'B y la razón de la homotecia es la razón (positiva) de los segmentos O'B y OA. Si por el contrario, el punto A se transforma en B' entonces la recta AB' es invariante y es el punto H2 el centro de homotecia. En este caso, la razón de la homotecia es negativa. Ejes de homoteciaDadas dos circunferencias, estas siempre se pueden considerar como homotéticas una de la otra. En la figura de a lado, las líneas de s1, es en la homotecia de razón positiva, con centro en P1, o de razón negativa, con centro de homotecia en N1. Consideremos las homotecias, una con centro en P1 en la cual la circunferencia S2 es homotética de la circunferencia s1, y la homotecia de centro P3 en la que la circunferencia s3 es homotética a la circunferencia s2. La composición de estas dos homotecias es la homotecia de centro en P2 que transforma la circunferencia s1 en la circunferencia s3. Es por esta razón que los centros de homotecia positivos, P1, P2 y P3 están alineados. En general, dadas tres circunferencias existen seis centros de homotecia, alineados tres a tres sobre cuatro rectas. Estas rectas son las llamadas ejes de homotecia de las tres circunferencias dadas. Véase tambiénReferencias y su puntoBibliografía
|