El término se usa en general para referirse a una molécula de dimensiones específicas, integrada normalmente por uno o más oligosacáridos unidos de modo covalente a cadenas laterales específicas de polipéptidos. Suelen tener un mayor porcentaje de proteínas que de glúcidos. Los términos proteoglicano y peptidoglucano designan agregados masivos formados por glúcidos y proteínas o séptimos péptidos, para los cuales la palabra molécula no tiene significado preciso. Las
partículas de proteoglicanos tienen un mayor porcentaje de glúcidos que de proteínas.
Características generales
Existen en todo tipo de organismos, aunque prevalecen sobre todo en los líquidos y en las células de los animales, en las que tienen muchas funciones. Se encuentran muy difundidas en las membranas de las células o en asociación como componentes de la cubierta superficial.[cita requerida]
Es lógico preguntarse cual sería la razón de la presencia del glúcido. Una propuesta es que la fijación de azúcares a una proteína es la etiqueta química con la que se identifican las proteínas destinadas a utilizarse fuera de la célula o en la trama membranosa de esta. Así, las proteínas que se conservarán y usarán en el citoplasma de la célula no están glucosiladas.
Varias proteínas están involucradas en los contactos célula–célula (p.ej., esperma–oocito), virus–célula, bacteria–célula, e interacciones hormona–célula
Antifreeze protein
Ciertas proteínas del plasma de peces de aguas frías
glucoproteínas específicas de las membranas de superficie de los plaquetas
Hormonas
Las hormonas que son glucoproteínas tienen dos subunidades, por lo que se denominan diméricas. Dado que las subunidades son diferentes, son hormonas hetero-diméricas.
La subunidad alfa (α) es común a varias hormonas es denominada Glycoprotein hormones alpha chain (GLHA).
Otras denominaciones son: Anterior pituitary glycoprotein hormones common subunit alpha, Chorionic gonadotrophin subunit alpha (CG-alpha), Follicle-stimulating hormone alpha chain (FSH-alpha).[4]
Estas hormonas difieren en su subunidad beta (β) que es específica de cada hormona y le aporta su actividad biológica.
La subunidad alfa (α) humana, está formada por 116 aminoácidos (aa) y tiene una masa molecular de 13.075 Daltons.
Estas hormonas se unen a receptores específicos en las células objetivo que, a su vez, activan las vías de señalización aguas abajo.
Como grupo, las glucoproteínas manifiestan grandes diferencias en su contenido de glúcidos, el cual fluctúa de menos del 1 % hasta el 80 % del peso total. Las que tienen más de 4 % de glúcidos se llaman en ocasiones mucoproteínas porque poseen una gran viscosidad.
La unión covalente con el péptido se realiza mediante un enlace glucosídico con la cadena lateral de residuos de serina, treonina o asparagina.
Los grupos oligosacáridos unidos al grupo -OH de la serina y la treonina se llaman 'O-ligados', mientras que los fijos al grupo amida -NH2 de la asparagina se llaman 'N-ligados'. El número de grupos oligosacáridos por molécula de proteína es variable, pero todos los grupos de la molécula suelen ser idénticos.
Los azúcares más comunes en tales oligosacáridos son la D-galactosa, la D-glucosa, la D-manosa,
la L-fucosa, la N-acetil-D-glucosamina, etc.
Tipos de glicosilación
Existen varios tipos de glicolsilación aunque los dos primeros son los más comunes:
En la gliciación, también denominada glicosilación no-enzimática, los azúcares se enlazan covalentemente con una molécula de proteína o lípido, no con el efecto de control de una enzima, sino a través de una reacción de Maillard.
Monosacáridos
Los monosacáridos comúnmente encontrados en las glucoproteínas eucariotas incluyen:[2]
Principales azúcares encontrados en las glicoproteínas humanas[6]
Los grupos monosacáridos pueden ayudar en el plegado de proteínas, mejorar la estabilidad de las proteínas y están involucrados en las señales celulares.
Reconocimiento celular
Los grupos sanguíneos dependen del tipo de glicoproteína que contienen la membrana de los eritrocitos; el grupo A tiene como oligosacárido una cadena de N-acetilgalactosamina, mientras que el grupo B tiene una cadena de galactosa, y por tanto, el grupo AB presenta los dos tipos de glicoproteínas y el grupo 0 carece de ambos. Para determinar el grupo sanguíneo se usan antisueros, que contienen anticuerpos que reconocen determinado tipo de glucoproteína (el antisuero A reconoce la glucoproteína A). El conocimiento del grupo sanguíneo es importante para hacer transfusiones y evitar la formación de coágulos que provocan infartos y trombosiscerebrales mortales.
Análisis
Se usan una variedad de métodos de análisis en la detección, purificación y análisis estrcutural de glucoproteínas[2]: 525 [3][7]
Algunos métodos importantes usados para estudiar glucoproteínas
Detecta glucoproteínas como bandas rosas después de una separación por electroforesis.
Incubación de células cultivadas con bandas radiactivas de glucoproteínas
Permite la detección de azúcares marcados radiactivamente después de una separación por electroforesis.
Tratamiento con endo- o exo-glicosidasas o fosfolipasas apropiadas
Los desplazamientos en la migración en la electroforesis ayudan a distinguir entre proteínas con N-glicanos, O-glicanos, o enlaces GPI y también entre N-glicanos con alto contenido en manosa y N-glicanos complejos.
Para identificar azúcares específicos, su secuencia, enlaces, y la naturaleza de la cadena glucosídica.
Dispersión de luz multiángulo (Multi-angle light scattering)
En combinación con la cromatografía de exclusión de tamaño, absorción ultravioleta y refractometría diferencial, proporciona información sobre la masa molecular, la relación proteína-carbohidrato, el estado de agregación, tamaño, y agunas veces la ramificación de la cadena de glicano. En combinación con con el análisis del gradiente de composición, analiza las asociaciones para determinar la afinidad de enlacesy la estoquiometría con proteínas o carbohidratos en solución sin labelizar.
La glicosilación de las proteínas tiene una gran variedad de aplicaciones, desde influir en la comunicación entre células hasta cambiar la estabilidad térmica y el plegamiento de las proteínas..[8][9] Debido a las capacidades únicas de las glicoproteínas, se pueden utilizar en muchas terapias.[9] Al comprender las glicoproteínas y su síntesis, se pueden utilizar para tratar el cáncer, la enfermedad de Crohn, el colesterol alto, etc.[10]
El proceso de glicosilación (unión de un carbohidrato a una proteína) es una modificación postraduccional, lo que significa que ocurre después de la producción de la proteína.[10] La glicosilación es un proceso al que se someten aproximadamente la mitad de todas las proteínas humanas e influye en gran medida en las propiedades y funciones de la proteína.[10] Dentro de la célula, la glicosilación se produce en el retículo endoplásmico.[10]
Una glicoproteína es un compuesto que contiene un carbohidrato (o glicano) unido covalentemente a una proteína. El carbohidrato puede estar en forma de monosacárido, disacárido(s), oligosacárido(s), polisacárido(s) o sus derivados (por ejemplo, sulfo o fosfo-sustituido). Pueden estar presentes una, varias o muchas unidades de carbohidratos. Los Proteoglicanos son una subclase de glicoproteínas en las que las unidades de carbohidratos son polisacáridos que contienen amino azúcares. Estos polisacáridos también se conocen como glicosaminoglicanos.
Terminología: ¿glucoproteínas o glicoproteínas?
Hay una discusión sobre si se debe usar el término glucoproteínas o glicoproteínas.
La raíz griega glykys- (dulce) utilizada a partir del siglo XIX por los químicos franceses para denominar a múltiples sustancias químicas de origen glucídico ha pasado tradicionalmente en español a la forma "gluco-", a diferencia del inglés en que se usan tanto "gluco-" (que expresa relación con la glucosa) como "glyco-" (que expresa relación con los glúcidos). Por lo tanto en español se aconseja evitar el anglicismo "glicoproteína" y usar siempre "glucoproteína" para referirse a moléculas que contienen proteínas y glúcidos.[12]
↑Stepper J, Shastri S, Loo TS, Preston JC, Novak P, Man P, Moore CH, Havlíček V, Patchett ML, Norris GE (February 2011). «Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins». FEBS Letters(en inglés)585 (4): 645-650. PMID21251913. doi:10.1016/j.febslet.2011.01.023.