Factorización de rango

Dada una matriz , de dimensiones y de rango , una factorización de rango de es un factorización de la forma , donde es una matriz y es una matriz .

Para construir una factorización de este tipo se puede calcular , la forma escalonada reducida de . Entonces se obtiene eliminando de todas las columnas que no son columnas pivote, y eliminando todas las filas de ceros de .

metal

Demostración

Sea una matriz de permutación tal que en forma de bloques, donde las columnas de son las columnas pivote de . Cada columna de es una combinación lineal de las columnas de , luego hay una matriz tal que , donde las columnas de contienen los coeficientes de cada una de esas combinaciones lineales. Así pues, , siendo la matriz identidad . Mostraremos a continuación que .

Transformar en su forma escalonada reducida equivale a multiplicar por la izquierda por una matriz que es un producto de matrices elementales, con lo que , donde . Podemos entonces escribir , lo que nos permite identificar , es decir, las filas no nulas de la forma escalonada reducida, con la misma permutación de columnas que aplicamos a la matriz . Tenemos, por tanto, que , y como es invertible, esto implica que , lo que completa la prueba.

Referencias