Distribución de Weibull

Weibull
Probability distribution function
Función de densidad de probabilidad
Cumulative distribution function
Función de distribución de probabilidad
Parámetros escala (real)
forma (real)
Dominio
Función de densidad (pdf)
Función de distribución (cdf)
Media
Mediana
Moda si
Varianza
Coeficiente de simetría
Entropía
Función generadora de momentos (mgf)
Función característica

En teoría de la probabilidad y estadística, la distribución de Weibull es una distribución de probabilidad continua. Recibe su nombre de Waloddi Weibull, que la describió detalladamente en 1951, aunque fue descubierta inicialmente por Fréchet (1927) y aplicada por primera vez por Rosin y Rammler (1933) para describir la distribución de los tamaños de determinadas partículas.

Definición

Función de Densidad

Si es una variable aleatoria continua, se dice que tiene una distribución Weibull con parámetros y escribimos si su función de densidad es[1]

donde es el parámetro de forma y es el parámetro de escala de la distribución.

La distribución modela la distribución de fallos (en sistemas) cuando la tasa de fallos es proporcional a una potencia del tiempo:

  • Un valor indica que la tasa de fallos decrece con el tiempo.
  • Cuando , la tasa de fallos es constante en el tiempo.
  • Un valor indica que la tasa de fallos crece con el tiempo.

Función de Distribución

La función de distribución acumulada de una variable aleatoria es

para .

Propiedades

Si entonces

  • La tasa de fallos (hazard) es
  • El -ésimo momento de es
  • La asimetría y curtosis de están dadas por

y

donde .

Distribuciones Relacionadas

  • La distribución de Weibull desplazada (a través de un parámetro adicional) también se encuentra en la literatura.[2]​ Tiene función de densidad
para , donde es el parámetro de forma, es el parámetro de escala y , el de localización. Coincide con la habitual cuando .
  • Si entonces .
  • Si entonces , es decir tiene una distribución de Rayleigh.
  • La función de densidad de la distribución de Weibull cambia sustancialmente cuando varía entre 0 y 3 y, en particular, cerca de x=0. Cuando la densidad tiende a cuando se aproxima a y la densidad tiene forma de J. Cuando la densidad tiene un valor finito en x=0. Cuando la densidad se anula en , tiene una pendiente infinita en tal valor y es unimodal. Cuando la densidad tiene pendiente finita en 0. Cuando la densidad y su pendiente son nulas en cero y la densidad es unimodal. Conforme crece, la distribución de Weibull converge a una delta de Dirac soportada en .
  • La distribución de Weibull también puede caracterizarse a través de la distribución uniforme estándar, si entonces . Este resultado permite simular numéricamente la distribución de manera sencilla.

Aplicaciones

La distribución de Weibull se utiliza en:

Aplicación de la distribución de probabilidad acumulada de Weibull a lluvias diárias máximas.[3]
  • Teoría de valores extremos
  • Meteorología
  • Para modelar la distribución de la velocidad del viento (frecuencia con la que se dan diferentes velocidades de viento)
  • En telecomunicaciones
  • En sistemas de radar para simular la dispersión de la señal recibida
  • En energía solar, para modelar la distribución de irradiación solar anual
  • En seguros, para modelar el tamaño de las pérdidas
  • En la hidrología, se utiliza la distribución de Weibull para analizar variables aleatorias como valores máximos de la precipitación y la descarga de ríos,[4]​ y además para describir épocas de sequía.[5]
El imagen azul ilustra un ejemplo de ajuste de la distribución de Weibull a lluvias máximas diarias ordenadas, mostrando también la franja de 90% de confianza, basada en la distribución binomial. Las observaciones presentan los marcadores de posición, como parte del análisis de frecuencia acumulada.

Véase también

Referencias

  1. Papoulis, Pillai, "Probability, Random Variables, and Stochastic Processes, 4th Edition
  2. Johnson, Kotz y Balakrishnan, 1994
  3. CumFreq software para adecuación de distribuciones de probabilidad [1]
  4. Oosterbaan, R.J. (1994). «Chapter 6 Frequency and Regression Analysis». En Ritzema, H.P., ed. Drainage Principles and Applications, Publication 16. Wageningen, The Netherlands: International Institute for Land Reclamation and Improvement (ILRI). pp. 175-224. ISBN 90-70754-33-9. 
  5. Burke, Eleanor J.; Perry, Richard H.J.; Brown, Simon J. (2010). «An extreme value analysis of UK drought and projections of change in the future». Journal of Hydrology 388: 131. doi:10.1016/j.jhydrol.2010.04.035. 

Bibliografía

Enlaces externos

Se puede usar software y un programa de computadora para el ajuste de una distribución de probabilidad, incluyendo la de Weibull, a una serie de datos: