Dos matrices tienen que tener un número igual de filas y columnas para poder sumarlas.[1] La suma de dos matrices A y B es una matriz que tiene el mismo número de filas y columnas que A y B. La suma de A y B, denotada como A + B, se computa añadiendo los elementos correspondientes de A y B:[2][3]
Por ejemplo:
También podemos substraer una matriz de otra, siempre que tengan las mismas dimensiones. A − B se computa restando los elementos correspondientes de A y B, y tiene las mismas dimensiones de A y B. Por ejemplo:
Suma directa
Otra operación, menos utilizada, es la suma directa (denotada por ⊕). Notar que la suma Kronecker se denota también por ⊕; el contexto tendría que hacer el uso claro. La suma directa de cualquier par de matrices A de dimensiones m × n y B de dimensiones p × q es una matriz de dimensiones (m + p) × (n + q) definida como[4][2]
donde los ceros son de hecho bloques de ceros, i.e. cero matrices.
Suma Kronecker
La suma Kronecker es diferente de la suma directa pero es también denotada por ⊕. Se define utilizando el producto Kronecker ⊗ y adición matricial normal. Si A es de tamaño n-por-n, B de tamaño m-por-m y denota la matriz identidad de k-por-k entonces la suma Kronecker está definida por: