Van der Waerden's theorem states that for any positive integers r and k there exists a positive integer N such that if the integers {1, 2, ..., N } are colored, each with one of r different colors, then there are at least k integers in arithmetic progression all of the same color. The smallest such N is the van der Waerden number W (r , k ).
Tables of Van der Waerden numbers
There are two cases in which the van der Waerden number W (r , k ) is easy to compute: first, when the number of colors r is equal to 1, one has W (1, k ) = k for any integer k , since one color produces only trivial colorings RRRRR...RRR (for the single color denoted R). Second, when the length k of the forced arithmetic progression is 2, one has W (r , 2) = r + 1, since one may construct a coloring that avoids arithmetic progressions of length 2 by using each color at most once, but using any color twice creates a length-2 arithmetic progression. (For example, for r = 3, the longest coloring that avoids an arithmetic progression of length 2 is RGB.) There are only seven other van der Waerden numbers that are known exactly. The table below gives exact values and bounds for values of W (r , k ); values are taken from Rabung and Lotts except where otherwise noted.[ 1]
k\r
2 colors
3 colors
4 colors
5 colors
6 colors
3
9[ 2]
27[ 2]
76[ 3]
>170
>225
4
35[ 2]
293[ 4]
>1,048
>2,254
>9,778
5
178[ 5]
>2,173
>17,705
>98,741[ 6]
>98,748
6
1,132[ 7]
>11,191
>157,209[ 8]
>786,740[ 8]
>1,555,549[ 8]
7
>3,703
>48,811
>2,284,751[ 8]
>15,993,257[ 8]
>111,952,799[ 8]
8
>11,495
>238,400
>12,288,155[ 8]
>86,017,085[ 8]
>602,119,595[ 8]
9
>41,265
>932,745
>139,847,085[ 8]
>978,929,595[ 8]
>6,852,507,165[ 8]
10
>103,474
>4,173,724
>1,189,640,578[ 8]
>8,327,484,046[ 8]
>58,292,388,322[ 8]
11
>193,941
>18,603,731
>3,464,368,083[ 8]
>38,108,048,913[ 8]
>419,188,538,043 [ 8]
Some lower bound colorings computed using SAT approach by Marijn J.H. Heule [ 6] can be found on github project page .
Van der Waerden numbers with r ≥ 2 are bounded above by
W
(
r
,
k
)
≤
2
2
r
2
2
k
+
9
{\displaystyle W(r,k)\leq 2^{2^{r^{2^{2^{k+9}}}}}}
as proved by Gowers .[ 9]
For a prime number p , the 2-color van der Waerden number is bounded below by
p
⋅
2
p
≤
W
(
2
,
p
+
1
)
,
{\displaystyle p\cdot 2^{p}\leq W(2,p+1),}
as proved by Berlekamp .[ 10]
One sometimes also writes w (r; k 1 , k 2 , ..., k r ) to mean the smallest number w such that any coloring of the integers {1, 2, ..., w } with r colors contains a progression of length k i of color i , for some i . Such numbers are called off-diagonal van der Waerden numbers . Thus W (r , k ) = w (r; k , k , ..., k ).
Following is a list of some known van der Waerden numbers:
Known van der Waerden numbers
w(r;k1 , k2 , …, kr )
Value
Reference
w(2; 3,3)
9
Chvátal [ 2]
w(2; 3,4)
18
Chvátal [ 2]
w(2; 3,5)
22
Chvátal [ 2]
w(2; 3,6)
32
Chvátal [ 2]
w(2; 3,7)
46
Chvátal [ 2]
w(2; 3,8)
58
Beeler and O'Neil [ 3]
w(2; 3,9)
77
Beeler and O'Neil [ 3]
w(2; 3,10)
97
Beeler and O'Neil [ 3]
w(2; 3,11)
114
Landman, Robertson, and Culver [ 11]
w(2; 3,12)
135
Landman, Robertson, and Culver [ 11]
w(2; 3,13)
160
Landman, Robertson, and Culver [ 11]
w(2; 3,14)
186
Kouril [ 12]
w(2; 3,15)
218
Kouril [ 12]
w(2; 3,16)
238
Kouril [ 12]
w(2; 3,17)
279
Ahmed [ 13]
w(2; 3,18)
312
Ahmed [ 13]
w(2; 3,19)
349
Ahmed, Kullmann, and Snevily [ 14]
w(2; 3,20)
389
Ahmed, Kullmann, and Snevily [ 14] (conjectured); Kouril [ 15] (verified)
w(2; 4,4)
35
Chvátal [ 2]
w(2; 4,5)
55
Chvátal [ 2]
w(2; 4,6)
73
Beeler and O'Neil [ 3]
w(2; 4,7)
109
Beeler [ 16]
w(2; 4,8)
146
Kouril [ 12]
w(2; 4,9)
309
Ahmed [ 17]
w(2; 5,5)
178
Stevens and Shantaram [ 5]
w(2; 5,6)
206
Kouril [ 12]
w(2; 5,7)
260
Ahmed [ 18]
w(2; 6,6)
1132
Kouril and Paul [ 7]
w(3; 2, 3, 3)
14
Brown [ 19]
w(3; 2, 3, 4)
21
Brown [ 19]
w(3; 2, 3, 5)
32
Brown [ 19]
w(3; 2, 3, 6)
40
Brown [ 19]
w(3; 2, 3, 7)
55
Landman, Robertson, and Culver [ 11]
w(3; 2, 3, 8)
72
Kouril [ 12]
w(3; 2, 3, 9)
90
Ahmed [ 20]
w(3; 2, 3, 10)
108
Ahmed [ 20]
w(3; 2, 3, 11)
129
Ahmed [ 20]
w(3; 2, 3, 12)
150
Ahmed [ 20]
w(3; 2, 3, 13)
171
Ahmed [ 20]
w(3; 2, 3, 14)
202
Kouril [ 4]
w(3; 2, 4, 4)
40
Brown [ 19]
w(3; 2, 4, 5)
71
Brown [ 19]
w(3; 2, 4, 6)
83
Landman, Robertson, and Culver [ 11]
w(3; 2, 4, 7)
119
Kouril [ 12]
w(3; 2, 4, 8)
157
Kouril [ 4]
w(3; 2, 5, 5)
180
Ahmed [ 20]
w(3; 2, 5, 6)
246
Kouril [ 4]
w(3; 3, 3, 3)
27
Chvátal [ 2]
w(3; 3, 3, 4)
51
Beeler and O'Neil [ 3]
w(3; 3, 3, 5)
80
Landman, Robertson, and Culver [ 11]
w(3; 3, 3, 6)
107
Ahmed [ 17]
w(3; 3, 4, 4)
89
Landman, Robertson, and Culver [ 11]
w(3; 4, 4, 4)
293
Kouril [ 4]
w(4; 2, 2, 3, 3)
17
Brown [ 19]
w(4; 2, 2, 3, 4)
25
Brown [ 19]
w(4; 2, 2, 3, 5)
43
Brown [ 19]
w(4; 2, 2, 3, 6)
48
Landman, Robertson, and Culver [ 11]
w(4; 2, 2, 3, 7)
65
Landman, Robertson, and Culver [ 11]
w(4; 2, 2, 3, 8)
83
Ahmed [ 20]
w(4; 2, 2, 3, 9)
99
Ahmed [ 20]
w(4; 2, 2, 3, 10)
119
Ahmed [ 20]
w(4; 2, 2, 3, 11)
141
Schweitzer [ 21]
w(4; 2, 2, 3, 12)
163
Kouril [ 15]
w(4; 2, 2, 4, 4)
53
Brown [ 19]
w(4; 2, 2, 4, 5)
75
Ahmed [ 20]
w(4; 2, 2, 4, 6)
93
Ahmed [ 20]
w(4; 2, 2, 4, 7)
143
Kouril [ 4]
w(4; 2, 3, 3, 3)
40
Brown [ 19]
w(4; 2, 3, 3, 4)
60
Landman, Robertson, and Culver [ 11]
w(4; 2, 3, 3, 5)
86
Ahmed [ 20]
w(4; 2, 3, 3, 6)
115
Kouril [ 15]
w(4; 3, 3, 3, 3)
76
Beeler and O'Neil [ 3]
w(5; 2, 2, 2, 3, 3)
20
Landman, Robertson, and Culver [ 11]
w(5; 2, 2, 2, 3, 4)
29
Ahmed [ 20]
w(5; 2, 2, 2, 3, 5)
44
Ahmed [ 20]
w(5; 2, 2, 2, 3, 6)
56
Ahmed [ 20]
w(5; 2, 2, 2, 3, 7)
72
Ahmed [ 20]
w(5; 2, 2, 2, 3, 8)
88
Ahmed [ 20]
w(5; 2, 2, 2, 3, 9)
107
Kouril [ 4]
w(5; 2, 2, 2, 4, 4)
54
Ahmed [ 20]
w(5; 2, 2, 2, 4, 5)
79
Ahmed [ 20]
w(5; 2, 2, 2, 4, 6)
101
Kouril [ 4]
w(5; 2, 2, 3, 3, 3)
41
Landman, Robertson, and Culver [ 11]
w(5; 2, 2, 3, 3, 4)
63
Ahmed [ 20]
w(5; 2, 2, 3, 3, 5)
95
Kouril [ 15]
w(6; 2, 2, 2, 2, 3, 3)
21
Ahmed [ 20]
w(6; 2, 2, 2, 2, 3, 4)
33
Ahmed [ 20]
w(6; 2, 2, 2, 2, 3, 5)
50
Ahmed [ 20]
w(6; 2, 2, 2, 2, 3, 6)
60
Ahmed [ 20]
w(6; 2, 2, 2, 2, 4, 4)
56
Ahmed [ 20]
w(6; 2, 2, 2, 3, 3, 3)
42
Ahmed [ 20]
w(7; 2, 2, 2, 2, 2, 3, 3)
24
Ahmed [ 20]
w(7; 2, 2, 2, 2, 2, 3, 4)
36
Ahmed [ 20]
w(7; 2, 2, 2, 2, 2, 3, 5)
55
Ahmed [ 17]
w(7; 2, 2, 2, 2, 2, 3, 6)
65
Ahmed [ 18]
w(7; 2, 2, 2, 2, 2, 4, 4)
66
Ahmed [ 18]
w(7; 2, 2, 2, 2, 3, 3, 3)
45
Ahmed [ 18]
w(8; 2, 2, 2, 2, 2, 2, 3, 3)
25
Ahmed [ 20]
w(8; 2, 2, 2, 2, 2, 2, 3, 4)
40
Ahmed [ 17]
w(8; 2, 2, 2, 2, 2, 2, 3, 5)
61
Ahmed [ 18]
w(8; 2, 2, 2, 2, 2, 2, 3, 6)
71
Ahmed [ 18]
w(8; 2, 2, 2, 2, 2, 2, 4, 4)
67
Ahmed [ 18]
w(8; 2, 2, 2, 2, 2, 3, 3, 3)
49
Ahmed [ 18]
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 3)
28
Ahmed [ 20]
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 4)
42
Ahmed [ 18]
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 5)
65
Ahmed [ 18]
w(9; 2, 2, 2, 2, 2, 2, 3, 3, 3)
52
Ahmed [ 18]
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)
31
Ahmed [ 18]
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 4)
45
Ahmed [ 18]
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 5)
70
Ahmed [ 18]
w(11; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)
33
Ahmed [ 18]
w(11; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4)
48
Ahmed [ 18]
w(12; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)
35
Ahmed [ 18]
w(12; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4)
52
Ahmed [ 18]
w(13; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)
37
Ahmed [ 18]
w(13; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4)
55
Ahmed [ 18]
w(14; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)
39
Ahmed [ 18]
w(15; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)
42
Ahmed [ 18]
w(16; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)
44
Ahmed [ 18]
w(17; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)
46
Ahmed [ 18]
w(18; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)
48
Ahmed [ 18]
w(19; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)
50
Ahmed [ 18]
w(20; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)
51
Ahmed [ 18]
w(21; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)
52
Karki[ 22]
Van der Waerden numbers are primitive recursive , as proved by Shelah ;[ 23] in fact he proved that they are (at most) on the fifth level
E
5
{\displaystyle {\mathcal {E}}^{5}}
of the Grzegorczyk hierarchy .
See also
References
^ Rabung, John; Lotts, Mark (2012). "Improving the use of cyclic zippers in finding lower bounds for van der Waerden numbers" . Electron. J. Combin. 19 (2). doi :10.37236/2363 . MR 2928650 .
^ a b c d e f g h i j k
Chvátal, Vašek (1970). "Some unknown van der Waerden numbers". In Guy, Richard; Hanani, Haim; Sauer, Norbert; et al. (eds.). Combinatorial Structures and Their Applications . New York: Gordon and Breach. pp. 31– 33. MR 0266891 .
^ a b c d e f g
Beeler, Michael D.; O'Neil, Patrick E. (1979). "Some new van der Waerden numbers" . Discrete Mathematics . 28 (2): 135– 146. doi :10.1016/0012-365x(79)90090-6 . MR 0546646 .
^ a b c d e f g h
Kouril, Michal (2012). "Computing the van der Waerden number W(3,4)=293". Integers . 12 : A46. MR 3083419 .
^ a b
Stevens, Richard S.; Shantaram, R. (1978). "Computer-generated van der Waerden partitions" . Mathematics of Computation . 32 (142): 635– 636. doi :10.1090/s0025-5718-1978-0491468-x . MR 0491468 .
^ a b Heule, MarijnJ (2017). "Avoiding triples in arithmetic progression" (PDF) . Journal of Combinatorics . 8 (3): 391– 422. doi :10.4310/JOC.2017.v8.n3.a1 .
^ a b
Kouril, Michal; Paul, Jerome L. (2008). "The Van der Waerden Number W(2,6) is 1132" . Experimental Mathematics . 17 (1): 53– 61. doi :10.1080/10586458.2008.10129025 . MR 2410115 . S2CID 1696473 .
^ a b c d e f g h i j k l m n o p q r
Monroe, Daniel (2019). "New Lower Bounds for van der Waerden Numbers Using Distributed Computing". arXiv :1603.03301 [math.CO ].
^ Gowers, Timothy (2001). "A new proof of Szemerédi's theorem" (PDF) . Geom. Funct. Anal. 11 (3): 465– 588. doi :10.1007/s00039-001-0332-9 . MR 1844079 . S2CID 124324198 .
^ Berlekamp, E. (1968). "A construction for partitions which avoid long arithmetic progressions" . Canadian Mathematical Bulletin . 11 (3): 409– 414. doi :10.4153/CMB-1968-047-7 . MR 0232743 .
^ a b c d e f g h i j k l
Landman, Bruce; Robertson, Aaron; Culver, Clay (2005). "Some New Exact van der Waerden Numbers" (PDF) . Integers . 5 (2): A10. MR 2192088 .
^ a b c d e f g
Kouril, Michal (2006). A Backtracking Framework for Beowulf Clusters with an Extension to Multi-Cluster Computation and Sat Benchmark Problem Implementation (Ph.D. thesis). University of Cincinnati.
^ a b
Ahmed, Tanbir (2010). "Two new van der Waerden numbers w(2;3,17) and w(2;3,18)". Integers . 10 (4): 369– 377. doi :10.1515/integ.2010.032 . MR 2684128 . S2CID 124272560 .
^ a b
Ahmed, Tanbir; Kullmann, Oliver; Snevily, Hunter (2014). "On the van der Waerden numbers w(2;3,t)" . Discrete Applied Mathematics . 174 (2014): 27– 51. arXiv :1102.5433 . doi :10.1016/j.dam.2014.05.007 . MR 3215454 .
^ a b c d
Kouril, Michal (2015). "Leveraging FPGA clusters for SAT computations". Parallel Computing: On the Road to Exascale : 525– 532.
^
Beeler, Michael D. (1983). "A new van der Waerden number" . Discrete Applied Mathematics . 6 (2): 207. doi :10.1016/0166-218x(83)90073-2 . MR 0707027 .
^ a b c d
Ahmed, Tanbir (2012). "On computation of exact van der Waerden numbers". Integers . 12 (3): 417– 425. doi :10.1515/integ.2011.112 . MR 2955523 . S2CID 11811448 .
^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa
Ahmed, Tanbir (2013). "Some More Van der Waerden numbers". Journal of Integer Sequences . 16 (4): 13.4.4. MR 3056628 .
^ a b c d e f g h i j k
Brown, T. C. (1974). "Some new van der Waerden numbers (preliminary report)". Notices of the American Mathematical Society . 21 : A-432.
^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad
Ahmed, Tanbir (2009). "Some new van der Waerden numbers and some van der Waerden-type numbers". Integers . 9 : A6. doi :10.1515/integ.2009.007 . MR 2506138 . S2CID 122129059 .
^
Schweitzer, Pascal (2009). Problems of Unknown Complexity, Graph isomorphism and Ramsey theoretic numbers (Ph.D. thesis). U. des Saarlandes.
^ Karki, Sikij (2024). "A New van der Waerden Number" (PDF) . U(t)-Mathazine (9): 34– 39.
^ Shelah, Saharon (1988). "Primitive recursive bounds for van der Waerden numbers" . Journal of the American Mathematical Society . 1 (3): 683– 697. doi :10.2307/1990952 . JSTOR 1990952 . MR 0929498 .
Further reading
External links