User talk:OdedSchramm
Hello. I've just added Circle packing theorem to the list of circle topics. If you know of other articles that should be listed there and are not, could you add those or point them out to me? Thanks. Michael Hardy (talk) 18:05, 30 March 2008 (UTC)
Topology ExpertDear Oded, I feel that there is some misunderstanding. I am not a "hoax" (what do you mean by this?), and my intentions are good. I am not the type of person who likes to boast, and I would rather people didn't know that I was a professor. That is why I edited your post. I am sorry that I left your signature (I didn't know that I did this). I earlier claimed that I was a professor because I felt people were not believeing my mathematical claims. However, after creating a few articles, I believe that I will gain more respect. Also, I keep on getting messages regarding me being a professor so that is also why I edited your post. I hope you understand. Secondly, my intentions are good. I have recently created three articles: All of these articles were either stubs or didn't have a page existent. I am also planning to do much more work on Wikipedia. Please see what I wrote on my talk regarding "supercompact spaces". I have also decided not to delete the article on supercompactness. Earlier, I wasn't familiar with Wikipedia and thought that only articles on major topics should be included. After seeing the page on "Supercompact spaces", I decided that I will also create pages on "minor"(though important!) topics and therefore created a page on linear continua. From now on I promise that I will be more understanding and not claim ownership of pages. I hope you understand me and that we will continue to collaborate in a friendly manner. Topology Expert (talk) 01:25, 12 May 2008 (UTC) Dear Topology expert: I am sorry that I called you a hoax. What I meant was that I thought that perhaps you are just trying to make fun of us. I can see now that your intentions are good and that you are doing good work. It is a bit hard to communicate with you. I am not sure if you are really reading what other editors have written to you. Finally, I see you no longer insist on including exercises in articles (we tried to explain this many times).
I hope that we can continue to communicate. Please let me know if you have read this. If I want to communicate with you - will you read what I write on your talk page? Oded (talk) 02:31, 12 May 2008 (UTC) Dear Oded, Thankyou for your response. I will definitely try to improve my article in terms of what you said. I was also wondering whether I could put my exercises some place else (if possible). I saw the wikibook on topology, and some things are incorrect. For example see the exercises in the section on local connectedness on Wikibook. I think that the Wikibooks could be improved in terms of exercises. Is it alright to put exercises there? Thanks for your help once again. Also, could you please write on my talk page next time? It is much easier for me to respond there. Topology Expert (talk) 05:44, 12 May 2008 (UTC) Dear Oded, Thankyou for fixing up my article. I am not actually familiar with how to write mathematical symbols so I will have to learn. Also, the definition you gave for the deleted comb space is basically the same as mine, written in a different way. I noticed that you seem to be experienced in measure theory so perhaps you will know whether more pages are required on the subject. I don't know how much detail is necessary, but perhaps we could merge some related pages together. I think that the definition of an outer measure and the definition of the lebesgue measure fit together nicely so perhaps we could add a little bit about how the outer measure relates to the lebesgue measure? I am not so sure about this since I am not very familiar with Wikipedia. Could you please give me your opinion on this? I also wanted to ask whether I could change the name of the article on 'locally connected spaces'. When I first created this article I thought that this concept has a connection with the concept of components of a topological space so I decided to add that in. I don't think there is a page written on 'components' anyway so maybe we could change the name of the article to 'Components and locally connected spaces' which is a much more appropriate name. Could you please tell me how to do this? I also noticed that there is not much written on the concept of the uniform norm. They have only used this in the context of function spaces but perhaps the more general reader would also prefer a view relating to the product topology. I am happy to write a page on that if necessary. I was also thinking that (as you mentioned) pages on concepts such as 'mesacompactness' and 'orthocompactness' could be improved. They are indeed important in mathematics. I am looking to improve pages on more elementary concepts which do turn out to be important in other branches of mathematics. Thankyou for your help once again. Topology Expert (talk) 10:47, 13 May 2008 (UTC) Dear Oded, Sorry for the late response. I meant (when I said that I was going to add a page on the uniform topology), was that there are pages on how the uniform topology fits in the context of functions spaces, but there is no page relating to the uniform topology on RωSuperscript text. Some readers (particularly students), may prefer to read about the properties of the uniform topology on RωSuperscript text. Of course, I am not saying that we should delete the original pages, but maybe we can add a page on this. I am not so sure whether Wikipedia is a learning tool (i.e, information should be written with examples so that people can learn), so maybe we shouldn't add an extra page relating to the uniform topology on RωSuperscript text. But in my opinion, some people may want to also read how the uniform topology can be imposed on RωSuperscript text and some of its properties. Of course, the uniform topology is most used in functional analysis. Could you please give me your opinion on this? Also, I recently added some information regarding the relevance of the 'induced homomorphism' in algebraic topology (about two pages on a word file). But, David Eppstein deleted what I wrote. Therefore, I asked him why he did this but perhaps you may know what was wrong with what I wrote (since you are familiar with Wikipedia). Thankyou for your help. Topology Expert (talk) 08:47, 17 May 2008 (UTC) Dear Oded, I wasn't stating my intentions clearly; sorry for that. I really meant 'uniform metric' instead of 'uniform norm' so I did make a mistake. I (having learnt topology first from Munkres's text book), believe that perhaps we should include a new page on the uniform topology in relation to R^ω and other spaces (namely products of metric spaces). I feel opposed to my original intention in which I thought that beginners may find it beneficial to read a more elementary view of the uniform topology. Perhaps a functional analysis point of view may be a bit irrelevant for someone learning point-set topology. Now I see that Wikipedia is not for learning so perhaps it is not a good idea to include such a page. On the other hand, you mentioned earlier that Wikipedia is about putting maximum detail so I guess it is not such a bad idea. Could I please have your opinion on this? Thankyou for all your help. Topology Expert (talk) 10:00, 19 May 2008 (UTC) Uniform TopologyDear Oded, I wasn't able to respond to your previous message because of other committments. Sorry about that. I noticed that you removed the section on the local finiteness of topological spaces in the article 'locally finite collection'. I completely agree that it should be removed. But you wrote that the sentence, 'every locally finite space is finite' is false. According to the definition that was written under the section, this should be true. For example, the power set of an infinite topological space, is an example of a collection which is not locally finite (because it isn't point-finite). So basically, I was wondering why you wrote that the last sentence was false. I think that that section should be deleted anyway. Also, the uniform topology does appear to have a name in textbooks. In the book by Munkres, it is referred to as the uniform topology and the metric that induces this topology is referred to as the uniform metric. As most people study the book by Munkres, it seems appropriate to title the article as 'uniform topology'. I was thinking of perhaps creating this article under this name. Perhaps you would know whether this should be done. I also recently thought of some additional concepts that could be included in the article on 'Locally connected space'. Namely, the concept of a weakly locally connected space and the notion of quasicomponents. I feel that by adding this, I am including a bit too much information in this article. Maybe it would be better to split this article up. On a word file it takes up 7 pages which I don't think is appropriate for an article on this concept. On the other hand, there are many more things that can be added under this title and I am ready to add them. Could you please give me our opinion on this? Thankyou for your help. Topology Expert (talk) 08:00, 3 June 2008 (UTC) The space Z (integers) is locally finite but infinite. With regards to your other questions, I'll reply soon. --Oded (talk) 18:32, 3 June 2008 (UTC) I don't not have a definite opinion as to whether we should have an article on the uniform topology, beyond the way it is currently covered. If all there is to say about the subject is what I know, then the answer would be no. Oded (talk) 05:12, 4 June 2008 (UTC) Dear Oded, I know this is a trivial matter, but according to the definitions I have seen (a space is locally finite if every collection of subsets of the space is locally finite), the integers shouldn't be locally finie. This is because the collection of all open subsets of the set of integers is not locally finite (because this collection isn't point finite). If you are correct, then the definition I have read is wrong. On the other hand, many reliable sources give the same definition as what I know. So I was just wondering how the definition you know is worded. Most probably, the definition I have got is wrong. I thought about how the article on supercompacntess could be improved and I have some ideas. I was thinking of including some more spaces that are supercompact in the article. However, I am unsure whether I should do this. From what I have seen in mathematics articles, it is alright to include certain types of topological spaces that are supercompact. I am going ahead with this. If what I am doing is inappropriate for the article, could you please let me know? Topology Expert (talk) 07:55, 4 June 2008 (UTC) You are right about locally finiteness. I was a bit confused. Regarding supercompactness: I think you initially wanted to delete the article, as you thought it was not important enough. Since I don't know much about supercompatness, I don't feel that I can give advice as to what to add to the article. Likewise, I would think that unless you have now become a supercompactness enthusiast and feel that you have a good idea of what are some of the important facts known (published) about supercompactness, that you should probably leave the possible expansion of the article to those who have the subject closer to their heart. Oded (talk) 09:57, 4 June 2008 (UTC) Dear Oded, About local finiteness of a topological space, I believe that the following is a more appropriate defintion (in my opinion): A topological space, X, is said to be locally finite, if every collection of disjoint subsets of X is locally finite. The requirement that the sets be disjoint solves the problem and makes the statement, 'a space is locally finite iff it is finite' false. In this case, the claim that the integers is locally finite is true. However, most mathematics sources give a different definition. Truthfully speaking, the integers should be locally finite according to definition but isn't. In this definition it is. What is your opinion on this definition? I happened to notice that there is no article on the broom space. I think that a definition of the broom space is worthwile in the context of weakly locally connected spaces (or possibly in other contexts) but I am not sure. Do you think that an article should be created on the broom space? Thanks for your help. Topology Expert (talk) 06:42, 8 June 2008 (UTC) I don't think that there is any need to define a locally finite space. The first variant on the definition is just finite spaces, while the second variant is the same as being a discrete space (space with the discrete topology). I don't know the broom space. Oded (talk) 16:24, 8 June 2008 (UTC) Countable setDear Oded, Someone named JRSpriggs called what I added to the page on countable set 'incompetent and irrelevant'. This is what I added to the page (when I typed this on Wikipedia I did use TeX): Topological proof of the uncountability of the real numbers Theorem Let X be a compact Haudorff space that has satisfies the property that no one point sets are open. If X has more than one point, then X is uncountable. Before proving this, we give some examples: 1. We cannot eliminate the Hausdorff condition; a countable set with the indiscrete topology is compact, has more than one point, and satisfies the property that one point sets are open, but is not uncountable. 2. We cannot eliminate the compactness condition as the set of all rational numbers shows. 3. We cannot eliminate the condition that one point sets cannot be open as a finite space given the discrete topology shows. Proof of theorem: Let X be a compact Haudorff space. We will show that if U is a nonempty, open subset of X and if x is a point of X, then there is a neighbourhood V contained in U whose closure doesn’t contain x (x may or may not be in U). First of all, choose y in U different from x (if x is in U, then there must exist such a y for otherwise U would be an open one point set; if x isn’t in U, this is possible since U is nonempty). Then by the Hausdorff condition, choose disjoint neighbourhoods W and K of x and y respectively. Then (W intersection U) will be a neighbourhood of y contained in U whose closure doesn’t contain x as desired. Now suppose f is a bijective function from Z (the positive integers) to X. Denote the points of the image of Z under f as {x1, x2, ……}. Let X be the first open set and choose a neighbourhood U1 contained in X whose closure doesn’t contain x1. Secondly, choose a neighbourhood U2 contained in U1 whose closure doesn’t contain x2. Continue this process whereby choosing a neighbourhood Un+1 contained in Un whose closure doesn’t contain xn+1. Note that the collection {Ui} for i in the positive integers satisfies the f.i.c and hence the intersection of their closures is nonempty (by the compactness of X). Therefore there is a point x in this intersection. No xi can belong to this intersection because xi doesn’t belong to the closure of Ui. This means that x is not equal to xi for all i and f is not surjective; a contradiction. Therefore, X is uncountable. Corallary Every closed interval [a,b] (a<b) is uncountable. Therefore, the set of real numbers is uncountable. I am pretty sure that this is correct an there is nothing wrong with the proof. Why would he call this section 'incompetent'? Also, this is in the article on countable set so it is relevant. Could you please check the edit history and see whether this user has presented a valid reason? In my opinion, he has given an invalid reason. Thanks Topology Expert (talk) 08:46, 16 June 2008 (UTC)
Dear Oded, I did make a few mistakes such as giving an incorrect statement of the GCH, which I should have been careful about. But since the integers (Z) have the same cardinality as the natural numbers (N), it shouldn't really matter what symbol I use (I used the symbol in the context of countability; I could have chosen any old countable set for the proof). Perhaps what I wrote on the continuum hypothesis should be deleted but I think that the other section should be kept. I agree with the conditions you put forth, but those things can be easily fixed (just change f.i.c to Finite intersection condition). For the fifth condition, could you please tell me what was wrong with my style of writing? I feel that the section I added should be bought back but I want to have your opinion just in case. Thanks Topology Expert (talk) 06:53, 17 June 2008 (UTC) The previous post was written by me (I wrote it without logging in); sorry about that. Please ignore the part about changing f.i.c to Finite intersection condition. Is there an article on the finite intersection condition? Topology Expert (talk) 06:53, 17 June 2008 (UTC)
Dear Oded, I understand what you are trying to say, but instead of completely removing what I wrote, wouldn't it be better to edit the mistakes? If the problem is related to the fact that my edit shouldn't belong there, then where can it belong to? I am going to add it to the section on compact spaces. Could you please tell me if I shouldn't or if there is a better place to add it to. Thanks Topology Expert (talk) 09:45, 20 June 2008 (UTC) Perhaps I should add it to the continuum (mathematics) articles as you suggested. I will just read both articles and see which is more appropriate. However, do you think it is an option to create a new article on this proof and other proofs too? Topology Expert (talk) 09:49, 20 June 2008 (UTC)
Hausdorff DimensionDear Oded, I made some mistakes when I edited a couple of articles but I will fix them up. Topology Expert (talk) 08:37, 23 June 2008 (UTC) Deletion of the Tube LemmaDear Oded, Please see the page on the Tube lemma. I have nominated it for deletion for several reasons which are given on the discussion page. The main reason is probably the fact that the article doesn't even hint that there is a relation between the tube lemma and compactness but there are other reasons too. Thanks Topology Expert (talk) 11:11, 23 June 2008 (UTC) Almost SurelyDear Oded, Could you please justify your claim that a nowhere dense subset of the plane can have positive measure? Thanks Topology Expert (talk) 11:36, 23 June 2008 (UTC)
ProblemDear Oded, I am not able to type on your talk page; whenever I try, everything else gets removed. Could you please see my talk page instead (the last section)? Thanks Topology Expert (talk) 06:28, 24 June 2008 (UTC) WikipediaDear Oded, First of all, I was in a bit of a hurry when I wrote that a nowhere dense set has zero measure and I didn't write what I really meant; of course that is no excuse for what I wrote. What I really meant was that if a set has zero Lebesgue measure, then it must be nowhere dense. Second of all, for the article on Hausdorff dimension, I initially wrote that a countable discrete space has Hausdorff dimension 0. You then said that this was wrong so I changed it (because I believed you) to something which was really wrong. If you don't believe me see the history for that article. I also think it is quite unreasonable of you to say that I make mistakes often. It is not like you haven't made mistakes before. I find it quite insulting that you say I 'make up' mathematics and put it on Wikipedia. Topology Expert (talk) 09:36, 25 June 2008 (UTC)
First of all consider the statement: Every elementary set is finite m-measurable (m is the Lebesgue measure) One does not need to give a reference of this fact in order to add it to Wikipedia. The case for which a countable discrete space has Hausdorff dimension 0 is analagous. If I am adding a theorem which is either famous or published then I will give a reference. Also, I am quite certain that a set of Lebesgue measure 0 is nowhere dense. If you accept that the Lebesgue measure is an additive set function then it follows that if A is Lebsgue measurable, and B is Lebesgue measurable and A is a subset of B, then m(A) <= m(B). Then noting that every basis element in the plane (or R^n for any positive integer n) has positive measure, it follows that if X is a set of measure 0, X must be nowhere dense (if X did contain a basis element, it would have to have greater measure than this basis element which means it would have positive measure). I also can't see where I am making mistakes (apart from writing that a nowhere dense set has Lebesgue measure 0 and forgetting to add that a countable discrete space has Hausdorff measure 0 and not an arbitrary discrete space). I don't really care if you remove my entries since I am not writing them for my benefit. Topology Expert (talk) 06:21, 26 June 2008 (UTC) Regarding our disagreement as to whether or not a set of Lebesgue measure 0 i nowhere dense, I think that we are following different definitions. The definition I follow is: A subset Y of a topological space X is nowhere dense if and only if the interior of Y is empty. The definition you probably follow is: A subset Y of a topological space X is nowhere dense if and only if the interior of the closure of Y is empty. Note that the definition I follow is from Munkres' book (when I studied it) so I think that the definition I follow is correct. But from several other sources it seems that your definition is correct. Therefore, I think it is fair to say that neither of us was wrong. Topology Expert (talk) 06:24, 26 June 2008 (UTC)
You continually make mistakes. How is (-infinity, 0] a counterexample? Infinity is not an element of the set; it is the infimum of the set (if you want a reference to this, I can give you one). I want you to precisely tell me which closed interval is not compact in (-infinity,0]. You seem to only target my edits and revert them (how come you are able to pinpoint which articles I have edited and change them); could you please stop doing this? Instead, go and revert edits which are really wrong. Topology Expert (talk) 06:18, 27 June 2008 (UTC)
Dear Oded, Apologies for what I said earlier. If you read what I wrote carefully, then you would have seen the following statement: Let X be a simply ordered set having the least upper bound property. If X carries the order topology, then every closed interval in X is compact. Notice that it is written that every closed interval in X is compact. The example you have given is not a closed interval in . I hope you understand what I am trying to say. Please understand that everyone makes mistakes and although I have made a few (compared to how much I have written), it doesn't mean that everything I write is wrong. Anyway, I hope that we can sort out this 'problem' and continue as before. Topology Expert (talk) 11:02, 27 June 2008 (UTC)
ArticlesDear Oded, I have a few things to point out: 1. I found a reference to the statement I wrote earlier regarding compactness in the order topology; see the book by Munkres. Since I have given a reference you will probably believe me know. 2. I didn't write the proof of the tube lemma; I wrote everything else so I can't really do much about that. I can give another proof if necessary. 3. I also don't see what is so hard to understand about example 1 (I think Jack fixed that up and made it more clear) 4. If you read the proof of the Tychonoff theorem, it uses two key concepts; the maximum principle and the fact that the finite intersection condition is equivalent to compactness. 5. I am not 'confused' about what a closed interval is. I can name numerous books which define the closed interval as I have. 6. My goal is to improve Wikipedia and not to write incorrect statements. You seem to critizise everything I write without giving a valid reason. So far, your reasons have not been appropriate to the context and I think that you should see what good I am doing instead of seeing what bad I am doing. Topology Expert (talk) 03:09, 28 June 2008 (UTC)
Oded (talk) 03:48, 28 June 2008 (UTC) PS. I did read a proof of Tychonoff's theorem, but there was no maxmimum principle in it. If you look up maximum principle, you will find a concept which I'm pretty sure has nothing to do with Tychonoff's theorem. Do you mean Zorn's lemma? Dear Oded, It is a bit difficult for me to properly structure an article that I haven't created mainly because if I edit some other article, I have to follow the style of that article and not my own. This is one of the reasons why I prefer to create articles instead of editing old ones. However, the article on the tube lemma wasn't in a good state and I improved it in the hope that someone may build on that. Anyway, if the proof of the tube lemma doesn't fit in with what I wrote, I can give a different proof but I think for the time being it is best that I leave the article as it is. Regarding good exposition, you might notice that articles I create generally have a better structure than what I write on other articles. I stick to the guideline that if an article has been created, I will add relevant facts, fix links or correct mistakes; I may even add a section. When I create an article, I have lots of freedom because I know what my intentions are and I am able to properly 'fit in' facts so that the article retains its good exposition. For the tube lemma, I thought that I will properly structure what I can and this is what I did. I have also noticed that many of the definitions in Wikipedia do not agree with the definitions in textbooks. Anyway, I will follow the definitions given in Wikipedia from now on. Thanks Topology Expert (talk) 06:18, 28 June 2008 (UTC) Dear Oded, I think that there are quite a few proofs of the Tychonoff theorem. However, the proof I know does use the maximum principle. I will let you know from which source I obtained the proof soon. However, I think that it was from a textbook. Topology Expert (talk) 06:21, 28 June 2008 (UTC)
Dear Oded, I saw the article in Wikipedia on the maximum principle. I am not actually referring to this article (it certainly has nothing to do with the Tychonoff theorem!); I am referring to the maximum principle in set theory. Topology Expert (talk) 06:26, 28 June 2008 (UTC) I think that in Wikipedia, it is called the Hausdorff maximality theorem. Also, the proof of the Tychonoff theorem using the maximal principle can be found in Munkres' textbook on topology. Topology Expert (talk) 06:31, 28 June 2008 (UTC) What about thisHi Oded! Anyone can make a mistake, you know... If you think you know better and that there's no need to be friendly with other contributors just because you're right, you might be interested in looking for alternative venues [1], [2]. Happy editing! Expert in topology (talk) 11:27, 29 June 2008 (UTC)
Dear All, I think that it is a bit unfair to say that Oded was being unfriedly but thanks for the support. Also, I think that the main disagreement between Oded and I is that we sometimes follow different definitions; I think that Oded agrees with this. Also, regarding the Tychonoff theorem, I think that Oded has to use common sense. I said that the Tychonoff theorem uses the maximum principle in the proof. Oded said that this was bogus. There are two maximum principles; one relating to complex analysis and one relating to set theory. I think that common sense should prevail in deciding which maximum principle relates to the Tychonoff theorem. I just want to know why you (Oded) thought that I was referring to the maximum principle in complex analysis. Could you please tell me?
Also, I am happy to accept mistakes and I don't think that someone is unfriendly by saying that I make mistakes so please don't think that. It is just that Oded should wait to see what I have got to say regarding the mistake before reverting my edit. Oded should understand that I am also a mathematician. Sometimes, the mistake is not really a mistake and it is because we follow different definitions as I mentioned earlier. Second of all, I don't make mistakes everyday and some things I write are correct but Oded reverts it because he follows a different definition. Could you (Oded) please check whether the 'mistake' may be due to us following different definitions and not because it really is a mistake? Anyway, I hope that you all agree, that Oded understands what I amd trying to say and that we will continue to communicate. Topology Expert (talk) 07:38, 30 June 2008 (UTC) Dear Oded, I also don't understand why you say that the tube lemma is not related to the Tychonoff theorem. Don't you think that it is worthwile to mention that the tube lemma proves that the product of finitely many compact spaces is compact and that the Tychonoff theorem proves that the product of arbitrarily many compact spaces is compact? Also, I think that the reader will find it useful to note that the tube lemma doesn't generalize to infinite products. Topology Expert (talk) 07:45, 30 June 2008 (UTC)
Dear Oded, I understand what you are trying to say regarding the Tychonoff theorem. Also, I am not Expert in Topology, I don't know who he is nor do I know why he created an account. If you notice, my style of writing is completely different from his. Thanks Topology Expert (talk) 00:33, 1 July 2008 (UTC) Sock PuppetryDear Oded, Please understand the following: What if someone starts an account by the name 'Oded1' and writes exactly like you and you know that you are not 'Oded1'? Then what if someone accuses you of creating a new account? What would you do? I am in the exactly same situation. I don't know who started an account 'expert in topology' and why he did it. In fact, I think that his purpose was to get me in trouble. How could you think that I have done this? I never new that you could do such a thing to someone else. I want to expand Wikipedia and creating multiple accounts will get me nowhere. Suppose I did do this. Then why would I choose expert in topology; isn't that stupid since the name is so similar to topology expert? You have got to believe that I am not expert in topology. I also think that this is totally unfair since you have got no concrete evidence. What if someone writes in exactly the same style as you; how can you defend yourself? What are you intentions anyway? Topology Expert (talk) 06:34, 4 July 2008 (UTC) Dear Oded, I think that I did get a bit angry about the matter. Please understand that I am not 'expert in topology' and that I didn't even think that it was possible to create another account for this purpose. I originally thought that 'expert in topology' was supporting me so I thanked him. Then I realised that he is doing this to get me in trouble. I was a bit unhappy about some of your edits but I never would have imagined doing this. Also, do you think that creating another account will convince you (if at all there is some reason to convince you)? If you think that I am 'sock puppeting' then that is fine but please consider the possibility that someone else created an account for this purpose. Also, I hope that we continue to collaborate in a friendly manner and that we can ignore what has happened in the past. Topology Expert (talk) 06:53, 4 July 2008 (UTC) DishonestyI find it very hard to imagine a explanation in which T.E. has not been dishonest, especially in his early days, but I think he may still become a valuable contributor. As he becomes more invested in the project and more familiar with the people here, I think his earlier mistakes will either be silently forgotten or he will himself admit them, and move on. I am a little worried that the sock case is not a good place for him to do this though; here he is being accused, and by human nature must be defensive. I think for him to move beyond earlier mistakes, he'll have to feel part of the community and see he has a place here (rather than trying to defend his place). If you are definitely convinced EiT and TE are the same person (or collaborating from the same place), it is probably best to ask for a checkuser to set our minds at ease (one way or the other). I believe sufficient justification for the CU would come from TEs persistent anon edits, sometimes only a minute before and after a logged in edit. I try to stay out of the actual content dispute, since this is a combination of mathematical correctness, mathematical taste, and encyclopedic taste. In case it is not clear, I very much support you in matters of mathematical correctness, and I definitely want to thank you for keeping our articles from being sloppy collections of mathematical lies. I think however that it is dangerous at wikipedia to try and go after the "truth", rather than "verifiability". If I really care whether or not something is true, I work it out on my own and then have an expert check my work. All I expect from wikipedia is that the lies it tells are the standard ones (for instance, I still have not deleted a subgroup lattice picture of the sporadic simple groups that is just wrong, because it appears in a reliable source. Instead I just marked the image discussion with the erratum). Basically, the arguments are going to be long and fruitless if you argue about truth, but if you argue about WP:V and WP:RS, all admins will be on your side, and the other editor will be forced to reread his sources, and hopefully correct his own mistake. We only have a limited number of editors who are really familiar with topology, and we definitely appreciate your work. On a personal note, I wanted to thank you for being patient during the order topology question, as it made for several enjoyable hours of me relearning a bit of point set topology (I think the last I had looked at order topology was 1996... wow, apparently I didn't learn it very well then). If you are interested, I have a series of naive but hopefully interesting questions I was going to ask at WP:RD/MATH once the dispute has blown over. It occurred to me that the subspace topology on {0} union (1,2) union {3}, as a subspace of the real line, cannot be induced from an order topology. I wanted to give an algebraic proof using Aut() in various categories, but couldn't make it stick. I also wondered about various cardinalities of discrete sets; are only countable cardinalities induced from order topologies? I suspect there is some embedding theorem due to a Polish guy that would answer most of my questions. JackSchmidt (talk) 21:31, 4 July 2008 (UTC)
In fact the subspace topology on (1,2) U {3} cannot be induced from an order topology. Thanks Topology Expert (talk) 03:49, 5 July 2008 (UTC)
Perfect spaceDear Oded, Thanks for reviewing the article on perfect space. Could you please tell me what my mistakes were? Don't be reluctant to change the article on perfect space if you are certain that I have made a mistake but please inform me of the mistake beforehand. Thanks Topology Expert (talk) 02:57, 5 July 2008 (UTC)
HelpHello. Sorry to bother you, but I'm having a slight problem with User:Arcfrk on the talk page of Differential geometry of surfaces. He has attacked all the parts I added and claims quite inaccurately that I have been following him around. I have filed a report on his second unprompted attack on the talk page of wikiproject mathematics. The material I wrote has not been changed since I wrote it, but it was only a first draft. I wonder whether you could shine any light on this situation. At present I've just started writing Plancherel theorem for spherical functions. User:R.e.b. OKd the preliminary article on Zonal spherical functions. I am not sure why Arcfrk has decided to attack me in this way. Many thanks, Mathsci (talk) 23:43, 5 July 2008 (UTC)
Perfect space discussionDear Oded, Please see my comments on the discussion page of perfect space. Could you also please tell me why you think that theorem 1 (in perfect space) follows from the Baire category theorem. The proof of the Baire category theorem is similar to the proof of theorem 1 but no theorem is dependent on the other. Thanks Topology Expert (talk) 04:41, 6 July 2008 (UTC) MediationDear Oded, thank you for responding to my request at the Differential geometry of surfaces. I also very much appreciate your fair assessment of the situation and attempts at mediation! For my part, I can promise not to initiate any personal discussions and to keep the matters civil. Moreover, this would give me a chance to resume editing mathematics articles (since you said you weren't very interested in the "past baggage", I'll spare you the details). Unfortunately, given his latest posting at WT:WPM, I have doubts that MathSci is prepared to honor a straightforward deal that you have suggested. Best regards, Arcfrk (talk) 22:12, 7 July 2008 (UTC)
Essential RangeDear Oded, Do you think that there should be an article on the 'essential range' of a function? I think that I should create one but generally it is quite difficult to give references to such a concept. Thanks Topology Expert (talk) 05:46, 9 July 2008 (UTC) What is the essential range? Oded (talk) 06:25, 9 July 2008 (UTC) Dear Oded, The essential range of a function is defined mathematically as follows (note that: the essential range is only defined for functions that are essentially bounded and measurable on a measure space X): Essential range of f = {complex numbers z | m ({x: abs (f(x) - w) < e) is greater than 0 for all e > 0} note that: 'm' is the measure defined on the domain of the function I hope that I have clearly worded this but just in case, one can describe the essential range of a function as follows: The essential range of a complex valued function is the set of all complex numbers w such that the inverse image of each epsilon-neighbourhood of w under f has positive measure. Actually, I only learnt about the essential range of a function fairly recently. It is one of those concepts (similar to supercompactness) that have some importance in mathematics but are not in general significant. I intuitively think of the essential range of a function as the 'non-negligible' range. I can give a few properties of the essential range later but I know for a fact that the essential range of a function is always compact as a subset of the complex plane. Thanks Topology Expert (talk) 05:33, 10 July 2008 (UTC) Dear Oded, I think that I am going to create the article after I have found a decent reference. Of course, I would appreciate it if you could give me your opinion on the matter beforehand. Thanks Topology Expert (talk) 05:55, 10 July 2008 (UTC)
Dear Oded, Thanks for your opinion; actually I did create the article on the essential range. Note that, the book from which I found this definition actually gave an exercise which asked to prove that the essential range is compact, and asked what relation exists between the essential range and the essential supremum of a function. Basically I gave a proof that the essential range is compact and stated the relationship between the two concepts in the article. Do you think that this is OK (it is not original research since I basically gave the solution to an exercise). I also added that every bounded function is essentially bounded (which is an obvious fact (in my opinion)). So, I think that what I have written is OK since it is not original research. Only verification is a problem but since I have given a proof of each statement I think that this is also OK. If you notice, I also added a reference to the book which I got this information from. Since this book is quite large, do you think that it is necessary to include the page number of the definition or do you think people can find it through the index and it is not necessary to include the page number? Thanks Topology Expert (talk) 00:58, 11 July 2008 (UTC) I think that the article you created has way too much in it. What you write as theorems are not theorems but essentially trivial excercises. I don't see why you restrict the article to essentially bounded functions. If Rudin used this concept at some point and found it convenient to have these assumptions for some particular purpose, this does not mean that WP needs an article about it. If it shows up in several books or papers, then it may deserve an article. Nothing in the article explains why this concept is important and of interest. Oded (talk) 03:56, 11 July 2008 (UTC) Civility non-problemCould you take a look at Talk:Separable space#Mistake? and User:Plclark the page? Both pages strike me as being contrary to the wikipedia culture, and the talk page especially seems incredibly condescending in my opinion. Thanks, JackSchmidt (talk) 13:23, 9 July 2008 (UTC)
Apologies, I cannot answer your questions right now (have to go soon), but hope to do it some time today. I had two thoughts about our earlier discussion: one nice example might be the Stone-Cech compactification of . Another thought is that when you ask someone a math question and they answer rudely avoiding the question, it might be an indication that they do not know the answer and are reluctant to admit it. Oded (talk) 19:35, 9 July 2008 (UTC) I do not recall ever seeing this A-F example, nor the example you mention from Sierpinski's book. (I am not a point-set topology expert, but do like the subject, and have had use for it from time to time.) These are nice examples. If we believe the statement from the article that gives a bound on the cardinality of a separable Hausdorff space (which I am inclined to believe), then it is not true that every Hausdorff space embeds in a separable Hausdorff space, since the cardinalities of Hausdorff spaces are unbounded. The trouble with your example with the Fort space is that the proposed collection of "open sets" does not form a topology, since it is not closed under finite intersections. Perhaps for this reason the "merging" does not have a name. Its scope is not so general. For it to work you will need Y to have the property that the intersection of any two open sets is nonempty, and this fails for Hausdorff spaces (except for trivial cases where the space has one point or no points). I hope this helps. Oded (talk) 22:32, 9 July 2008 (UTC)
Just to point out a few things (unrelated to this argument), there are a few nice examples of spaces that are Hausdorff, separable but do not have the property that a point in the closure of a set is the limit of a sequence of points belonging to that set. For example, consider Rω in the box topology. This space has a countable dense subset and is Hausdorff but does not satisfy the desired condition. A proof is as follows: Take the set X = {(xi) | xi > 0 for all i}; note that 0 is a limit point of this set. Suppose there is a sequence of points in X converging to 0. Let (sn) be that sequence and let the nth term, sn = (s1n, s2n, s3n…..). Then choose the basis element about 0 to be: B = (-s11, s11) X ……X (-snn, snn)….. Then B cannot contain any term of the sequence (sn) since the nth co-ordinate of this term doesn’t belong to (-snn, snn). Q.E.D Actually, if a space is first countable, then if a point belongs to the closure of a particular set, it must be the limit of a sequence of points in that set. Topology Expert (talk) 04:25, 10 July 2008 (UTC) Just dropping a line to confirm that incivility was never my intent. As I said, I thought that JackSchmidt was asking the same question several times and not paying attention to my answers, but it eventually came out that the two of us were not being clear enough with each other about exactly which hypotheses were in force: i.e., it was all some kind of misunderstanding. Related comments: (i) I'm not sure what on my user page seemed counterproductive and unwikipedic, but if it can be viewed as such then, no problem...it's gone. All it says now is that I am a mathematician and what my research specialities are. (ii) I think it is now clear that I was not being rude as an attempt to cover up a lack of knowledge. (iii) Like Prof. Schramm, I do not buy into the "Aw shucks, I'm just folks" proclamations that JackSchmidt makes sometimes: your user page says you are a mathematician and that you have a master's degree in mathematics: that's not consistent with calling topology a bunch of mumbo-jumbo! Also your edits clearly indicate that you know what you're doing. (I disagree that any random person could pick up a topology book and use it to make good edits to wikipedia articles on relatively technical topological matters. Moreover, why would they want to?) In fact, despite the fact that we seem to have had an unfortunate misunderstanding, we have already worked together to significantly improve two different articles. I look forward to further positive collaborations in the future. Plclark (talk) 02:51, 11 July 2008 (UTC)Plclark Right. I long since regarded this incivility episode as forgotten and irrelevant. With regards to what your user page said, I actually did not see a serious problem there. Perhaps there was one or two statements that were blunt (I don't actually remember, and there's no need to look at the diffs and check now). But, on the other hand, it did indicate your frank perspective and some statement of your WP style, which is valuable. From what I have seen so far, I agree that there is very significant variability in the quality of articles. Oded (talk) 03:45, 11 July 2008 (UTC)
Essential Range (importance)Dear Oded, I will respond to all your comments in dot points:
1. The essential range of an essentially bounded function is always compact. 2. Generally, essential range of an essentially bounded function always lies within a closed ball in R2 of radius equal to the essential supremum of that function. Note that, the properies I have described above are not necessarily reasons why one must restrict to essentially bounded functions in the definition. One could add the hypothesis in theorem 1 that the essential range of a function is compact if the function is essentially bounded. I think that the essential range is only defined for essentially bounded functions mainly because if the function is not essentially bounded, its essential range may not satisfy some important properties. I can list down some properties of the essential range of an essentially bounded that do not necessarily hold if the hypothesis of essential boundedness is ommitted.
Note that I am not an expert on the essential range but having done some research on it, I know that it is a concept in mathematics and does have some importance. I thought of some properties of the essential range and I can conclude that it does have some role in mathematics. If you analyse the defintion more carefully, perhaps you will understand why it may be of some importance. Anyway, I don't see what is wrong about having an article on the essential range since it is a concept in mathematics (like any other concept; for example Borel set). Thanks Topology Expert (talk) 05:36, 11 July 2008 (UTC) I am not saying that it is unimportant. All I said is that there is noting in the article that explains the importance, and that is a very serious shortcoming of the article. My guess is that the concept of essential range comes up as a tool to prove some Theorems, but not theorems about essential range. For example, the fundamental group is a concept that has many uses. It can be used to show that the sphere and the torus are not homeomorphic, for example. The concept of a Borel set is natural because the Borel sigma-field is the smallest sigma field that contains open sets, and both the concept of the sigma-field and of an open set are important. You quote Rudin. I am sure that Rudin does not mention the essential range as a fun concept by itself, but as a tool for some other objective. Wouldn't it be a good idea to mention that objective as an application of essential range in the article? Oded (talk) 05:46, 11 July 2008 (UTC) Dear Oded, Sometimes in textbooks, 'new' definitions are provided for the purpose of providing an exercise to the reader. These 'new' definitions may not actually be analysed in the textbook. I think that this is the same for Rudin's book. I have seen the index and the only reference to the essential range is given in the particular exercise I mentioned. I agree that it would be a good idea to mention an application of the essential range but currently I can't since I have no references apart from Rudin's book. Perhaps I will have to find one but what I have written so far is better than nothing. Regarding the examples you have given (borel sigma field and the fundamental group), they are very important concepts in mathematics and it would take one minute of searching to find an application of these concepts. Pretend you just learnt what metacompactness means; then it would take a lot more time to find applications of this concept. The same thing is true for the essential range of a function (in my opinion). Note that I completely agree with what you say, however. Thanks Topology Expert (talk) 09:30, 11 July 2008 (UTC) Of course, WP has much room for concepts much less important than the fundamental group. But I don't think that being defined as part of an excercise in a textbook is sufficient reason for a concept to have an article on WP. Possibly, in this case there are other reasons. But if we don't find other more significant mentions of this in the literature, then the article should be deleted. Oded (talk) 16:13, 11 July 2008 (UTC) Dear Oded, Do you agree that the essential supremum is an important concept in mathematics (when I say 'important' I mean worth studying)? If so, then I can list quite a few relations between the essential range of a function and the essential supremum. In fact, the essential range also has a relationship with another concept: Let Z = L2(-infinity, + infinity) and let f be a function in Z. Let M be the multiplicative operator taking and function g in Z to fg. Then the spectrum of M is equal to the essential range of f. I found out this relationship after 10 minutes of research. I will probably find out more such relationships in the future. All I am suggesting is that the essential range must be of some importance and I can find evidence to prove this. Thanks Topology Expert (talk) 04:36, 12 July 2008 (UTC) But, of course, you know that you should not put your own research on WP. Oded (talk) 01:30, 13 July 2008 (UTC) Dear Oded and Topo, Please see my comments on Talk:Essential range. Just now I did a MathSciNet search for essential range: 73 articles, from a 1959 Annals paper to 2007. For comparison, searching for "Ruth" and "Aaron" -- c.f. Ruth-Aaron pair -- on MathSciNet gives 3 articles; searching for "McGwire", "Maris", "Sosa" -- c.f. Maris-McGwire-Sosa pair -- gives none. The latter article was nominated for deletion and the result was "keep". I hope this gives some perspective on how un/important a math article can be and still be kept. The fact that Topo mentioned about the spectrum is eminently sourceable: I gave a reference on the talk page. I would like to think that by "research", Topo means this sort of "library research". I have already expressed on his talk page my concerns about his unsourced verifications and am hoping that he will respond positively to these concerns. Plclark (talk) 07:21, 13 July 2008 (UTC)Plclark
Oded (talk) 08:52, 13 July 2008 (UTC) Dear Oded, Then add a corollary to theorem 2 stating that the essential range of an arbitrary function is always closed. However, I think that you should still keep theorem 2. Thanks Topology Expert (talk) 03:16, 14 July 2008 (UTC)
Second momentI reverted your changes to Second moment. That isn't really an appropriate case for a dab page. Firstly, there are only two entries. When there are only two ambiguous terms, the preferred approach is to just put dablinks at the top of each of the articles, pointing to the other. I added one to the top of moment (mathematics). Additionally "second moment method" is not actually ambiguous with "second moment". See WP:disambiguation and WP:MOSDAB for more information on how to construct disambiguation pages. --Srleffler (talk) 22:49, 13 July 2008 (UTC)
Analysis fun at refdeskThanks for confirming an analytic function can be that weird on the boundary. I knew it could be unbounded on a dense set, but was nervous just taking 1/f; your exp(-Re(f)) was very clever. Is there a simple way of stating this in terms of PDE? Like "I have some continuous boundary data, so there is a continuous function on the closed disk that agrees with the boundary data on the unit circle and is harmonic on the open unit disk." I think there is just a formula for the solution in terms of the boundary data on the disk.
Thanks for pointing out arclength is not continuous. This strikes me as a really motivating example for sobolev spaces (or hoelder spaces). You can't expect control of the derivatives without requiring some control on the derivatives! I posted a sort of discussion of this on the refdesk, and found a fairly cool example, modulo proving that a certain integral was constant. I just took the obvious example of a wiggly horizontal line (the sine wave), but both maple and matlab agree the arclength of my guy is constant in n (about bigger than the arclength of the straight line of course)! I thought that was pretty wicked, but I wanted to make sure. Maple makes a habit out of misevaluating integrals, and the matlab method was not very specific on its true hypotheses (I used the oscillatory quadrature method, and its error bounds appeared consistent, so I suspect my function is ok). It would be nice to find a "Thomas" or "Stewart" integral that came from such an example (that is, a first year engineer could be assigned the problem of evaluating the integral, and could be expected to see that the sequence of curves clearly approached a straight line in the limit, but the arclengths did not approach the right number). Making the integrals diverge to infinity is pretty obvious, but I wanted to be a little more subtle than that. JackSchmidt (talk) 20:02, 14 July 2008 (UTC) RE: Topology Expert vs. Expert in topology sock caseUser:Expert in topology overall seems to have a better grasp of wiki-syntax than User:Topology Expert (although I'm sure the latter will pick things up). The best illustration of this is probably any of their edits to discussion pages: User:Expert in topology writes like most people, using a single suitably-indented paragraph with his signature at the end. User:Topology Expert hasn't got the hang of this yet, and writes in an unindented letter-like style complete with salutation and valediction, with his signature in the latter. While I'm sure it's possible to fake such a thing, it would be at least a bit awkward, and it seems like if you were going to try and maintain that the accounts were separate that you'd pick a different name in the first place! Based on all this, I'm inclined to believe User:Expert in topology's own story regarding his origins, hence User:Topology Expert would just be a (by now slightly confused) spectator. --tiny plastic Grey Knight ⊖ 08:44, 16 July 2008 (UTC)
User:Topology Expert seemed to be under the impression that the original problems you guys were having were because of mistakes in articles; I sent him this note explaining why it's OK to make mistakes in a wiki (as long as you put in reasonable effort), and I said I'd mention it here too. The whole "verifiability not truth" thing is really hard to get a handle on with respect to mathematics articles, for obvious reasons which I'm sure it would be rude of me to point out to your good self! :-) (I see Wikipedia talk:WikiProject Mathematics/Proofs is still being talked about) Anyway, hope all is well. --tiny plastic Grey Knight ⊖ 08:04, 18 July 2008 (UTC)
ParacompactnessDear Oded, I think that the section, 'examples and counterexamples', in the page on paracompactness, gives the wrong impression about paracompactness. I hope that you agree with me and the following reasons that I put forth:
I could probably list a lot more. Therefore, I think that this section should be re-written so that both examples of paracompact spaces and non-paracompact spaces are provided. In fact, why include a section entitled, 'definitions and relevant terms'. As far as I know about Wikipedia conventions (and I don't think I know much), the reader should refer to another article if he/she doesn't understand the terms in one particular article.
Could you please have a look at the reasons that I have put forth? If anything, some parts of the article should be slightly modified (in my opinion). Thanks Topology Expert (talk) 14:46, 23 July 2008 (UTC)
Yup, paracompactness has lots of applications in differential geometry and algebraic topology. The article is too restricted and only relates paracompactness with the concepts of point-set topology. Topology Expert (talk) 06:58, 25 July 2008 (UTC)
Let A_1 be the set of all functions f: R -> Z+ such that for each i not equal to 1, f^(-1) (i) contains at most one element. Note that A_1 is closed in X. Similarly, defined A_2 to be the set of all functions g: R -> Z+, such that g^(-1) (i) contains at most one element for each i not equal to 2. Note that A_2 is not closed in X. Note also that A_1 and A_2 are disjoint. I don't have time to do this, but one can prove that there are no disjoint neighbourhoods about A_1 and A_2 so that X is not normal. Clearly, X is Hausdorff (being the product of Hausdorff spaces). Therefore, X cannot be paracompact. If necessary I can supply a proof later. Topology Expert (talk) 07:40, 24 July 2008 (UTC) Also, note that the first uncountable ordinal is not paracompact. If L is the long line, and if w_1 is the first uncountable ordinal, then w_1 X {0} is homeomorphic to w_1 and therefore not paracompact. However, w_1 X {0} is a closed subspace of L; since it is not paracompact, L cannot be paracompact. Q.E.D Topology Expert (talk) 07:40, 24 July 2008 (UTC) By the way, the first uncountable ordinal (w_1) is not paracompact since:
Topology Expert (talk) 10:56, 24 July 2008 (UTC)
Moore SpaceDear Oded, There is an open problem in topology which asks whether every locally connected, locally compact, pseudocompact Moore space is metrizable. According to the definition of a Moore space in Wikipedia, a trivial counterexample to this conjecture is an arbitrary (non-empty) set given the indiscrete topology. I am led to believe that the definition of a Moore space as given by Wikipedia is incorrect since I obtained this conjecture from a reliable source which I can cite (a book). Not only is the definition of a Moore space wrong (as I believe) but the lede is also badly structured. The article states, According to Vickery's theorem a topological space is a Moore space iff it is regular and developable. If this definition is a consequence of Vickery's theorem, then what is the original definition? Also, in the 'examples' section, the Sorgenfrey line is given as an example of a completely normal, heriditarily separable space that is not a Moore space. I think that this example is wrongly placed; until the reader reads the latter part of the article on Jones' theorem, he/she will not understand the significance of the example. Also, why state in the 'examples' section that a Hedgehog space is a Moore space because it is metrizable? Every metrizable space is a Moore space so why name an obscure example of a metrizable space? I don't know much about Moore spaces but my current understanding has led me to believe that the article should be completely rewritten. I am mainly worried about the definition since it is the main component of the article. Perhaps the definition should state that a space is a Moore space iff it is a regular, T_1 space that is also developable; so a Moore space should also satisfy the T_1 axiom. I know for a fact that according to Munkres' book, a regular space is one such that points are separated from closed sets and that one-point sets are also closed. According to Wikipedia, a regular space doesn't need to satisfy the T_1 axiom. So according to the definition in Wikipedia, the definition of a Moore space is wrong. Could you please give me your opinions on this matter? Thanks Topology Expert (talk) 07:25, 28 July 2008 (UTC)
Thanks!
In particular, you and Tango did much more than the others, so you both also recieve:
Paracompactness and the definition of an AtlasDear Oded, According to Munkres' book, 'Topology a First Course' (page 223 in the first edition), a manifold is a second countable Hausdorff space that is locally Euclidean. Wikipedia accepts spaces that are not second countable as manifolds. I do not think that this is the right convention to follow. My reason being is that manifolds defined as Hausdorff, second countable locally Euclidean spaces can be imbedded in finite dimensional Euclidean space whereas manifolds (as defined by Wikipedia) cannot. In fact, the long line is a manifold (according to Wikipedia) but cannot be imbedded in R^w if w is a countable index set. Therefore, it can only be imbedded in R^J for uncountable J. Such spaces should not be allowed as manifolds for this reason. I am reluctant to change the definition because most articles in Wikipedia follow this definition of a manifold. For instance, according to the article on paracompactness, the long line is a non-paracompact space that is a topological manifold. According to 'my' definition, all manifolds should be paracompact. Could you please give me your opinion on this?
Secondly, please have a look at the page on Atlas (topology). You will probably find that it is not formal enough and seems to be directed to someone who does not know 'enough' topology. Here is my criticism of the article (I have much more criticism but these are the main points):
In fact, the user who wrote the majority of this article is User talk:Waltpohl (about four years ago). I contacted him but I don't think he is active on Wikipedia at the moment. From previous experience, deleting the article is not appropriate so I think that the article should be completely rewritten. Could you please give me your opinion on this? Thanks Topology Expert (talk) 10:01, 11 August 2008 (UTC)
End (topology)Dear Oded, Please have a look at my recent edit to Talk:End (topology). I don't think that your characterization of an end is correct (does not agree with the definition as given by Wikipedia). Did you mean that your definition of an end is the right one as opposed to that given by Wikipedia? Topology Expert (talk) 11:11, 11 August 2008 (UTC) Dear Oded, I have found requirements to make the two definitions equivalent; they are equivalent for Hausdorff, σ-locally compact spaces. Whenever I say 'your definition' I just mean the definition that you re-formulated from the article. Proof: Let X satisfy the given hypothesis. For each point, x in X, choose a compact subset Cx of X that contains a neighbourhood Ux of x. The collection of all {Ux} [indexed by the space X] forms an open cover of X and therefore has a countable subcover {Uxi} for i in N. Choose for each element in the subcover, an element Cxi containing it. Then X equals the union of all Cxi for i in N. Let An equal the union of all such Cxi for i varying from 1 to n. If e is the function that maps each An onto its complement, then we assert e satisfies the condition of an end. Since X is Hausdorff, each An is closed so that its complement is open. If Vi equals to the union of all Uxi for i varies from 1 to n, then the union of all Vi for i in N is X. Note also that the closure of the complement of each An is a subset of the complement of Vi which means that the intersection over all n of the closure of the complement of An is empty. Hence the intersection of the closures of all sets in the range of e will be empty. Therefore, e is an end as desired. Q.E.D For an uncountable set given the co-countable topology, there exists no function satisfying your hypothesis that is an end since there is only one such function. Whereas, in my proof I have shown the existence of a function satisfing your hypothesis that is still an end. The domain of the function constructed in the proof is a subset of the collection of all compact sets but it still is an end. Perhaps your definition should allow functions that are defined on any subcollection of the collection of all compact subsets of X. In fact, an end is a countable collection of sets; according to your definition an end is a function defined on all compact subsets of X and therefore need not be countable. Therefore, I am led to believe that your definition has to be modified quite significantly in order to agree with the definition given in the article. These are the possible modifications necessary:
a) In locally connected spaces, components of open sets are open. If is open, then X has to be locally connected to ensure that e(K) is really a neighbourhood of an end. b) Also, whoever assumed that is open? It is not open unless compact subsets of X are closed, i.e the Hausdorff condition must be assumed. After these two modifications are made, your definition of an end will agree with the article's definition for σ-locally compact spaces. I am not very knowledgeable about ends but the article says that an end may be used to 'compactify' a space. If this is true, then adding to compactness-related axioms to your definition may not be the best thing to do for the article's purposes. Do you have any opinions on this? In my opinion the definition of an end through functions should be removed since the original definition given by the article is the simplest and the most appropriate. Thanks Topology Expert (talk) 07:40, 12 August 2008 (UTC) Fibre BundleDear Oded, I am worried about the article on fibre bundles since such an important topic deserves more content. For instance, there is no real explanation of how two fibre bundles can be isomorphic or what it means for a map between bundles to be a morphism. Even trivial bundles are not defined properly; a bundle is trivial iff it is isomorphic to the trivial bundle. The article however gives an ambiguous definition of what it means for a bundle to be trivial. For instance, my point is that saying that a space is R has two meanings, one meaning may not be interpreted by the reader (the topological interpretation of this). In the case of fibre bundles, saying a bundle is trivial iff it is the trivial bundle is correct, but the definition should be more formal. Mainly, the article says that a bundle is trivial iff it looks 'globally' like a product. I think that once a detailed discussion on isomorphisms is included, this should be changed. Could you please have a look at this? The article does not also properly define the real definition of a fibre bundle; it only defines locally trivial fibrations. Fibre bundles that are important in mathematics, are defined through a structure group acting effectively on a fibre, and a collection of charts that are maximal with respect to certain axioms (that the composition of an element of a chart over an open set and the inverse of another such element over the same open set provides a homeomorphism of a fibre that is given by action of a certain element of the structure group on the fibre). Such fibre bundles are the 'real' fibre bundles and should be properly defined. In practice, some authors choose to omit some axioms that a fibre bundle is required to satisfy. In particular, the axiom that the topology on the structure group should be compatible with the fibre bundle (i.e the transition map between two charts has to be continuous relative to the topology on the structure group) is sometimes ommitted. If the article is to be improved, which definition should be included and what axioms are to be ommitted? Also, there are so many interesting theorems regarding fibre bundles that could be included. I have not seen it being mentioned anywhere in Wikipedia that the tangent bundle over a manifold is just a fibre bundle with fibre homeomorphic to the tangent space corresponding to a particular point on the manifold. I think that this is how tangent bundles are formally defined (once someone has established the notion of a tangent space) as opposed to the definition given in tangent bundle. Therefore, I am led to believe that the article on tangent bundles should be expanded. I am ready to include the definition of an isomorphism between bundles but I am not sure how to include commutative diagrams in the article. Do you know how to do so? As you suggested, I have included some comments on this on the article's discussion page but I doubt that I will get a response for sometime. Could you please give me your opinion on the standards of the article? Thanks Topology Expert (talk) 07:27, 1 September 2008 (UTC) Notification of automated file description generationYour upload of File:CircleRiemannMap1.svg or contribution to its description is noted, and thanks (even if belatedly) for your contribution. In order to help make better use of the media, an attempt has been made by an automated process to identify and add certain information to the media's description page. This notification is placed on your talk page because a bot has identified you either as the uploader of the file, or as a contributor to its metadata. It would be appreciated if you could carefully review the information the bot added. To opt out of these notifications, please follow the instructions here. Thanks! Message delivered by Theo's Little Bot (opt-out) 14:38, 6 May 2014 (UTC) |