User talk:Icek~enwikiWelcome! Hello, Icek~enwiki, and welcome to Wikipedia! Thank you for your contributions. I hope you like the place and decide to stay. Here are a few good links for newcomers:
I hope you enjoy editing here and being a Wikipedian! Please sign your name on talk pages using four tildes (~~~~); this will automatically produce your name and the date. If you need help, check out Wikipedia:Questions, ask me on my talk page, or place Blue in infraredIndeed, parts of the spectra outside the visible are often referred to using 'colours'. Blue represents simply shorter wavelengths and red longer. Such 'shifted' colours are also used on graphs. Please refer to the reference 3. quoted in the article for more information. Eurocommuter 18:52, 15 April 2006 (UTC) Lower flux, larger diameter(Your edit of 2003 UB313 on 2006-04-27). Hi, Icek. Indeed, my text could mislead but I’m afraid so can yours; we can do better. What I arguably failed to express is that if Bertoldi (thermal method) did assume a different position,..., he would come with a lower estimate. Regards. Eurocommuter 19:16, 27 April 2006 (UTC)
Assuming further the highest diameter (2500 km) and pole-on position of the object 1 the difference between the results would appear consistent… 1 If the object is in pole-on position the side facing the Sun (and the observer) gets hotter producing stronger emissions thus resulting in overestimation of the diameter using the thermal method.. Eurocommuter 19:42, 1 May 2006 (UTC) Your wrote:
Pan-STARRSI've replied on my talk page. In a nutshell, this comes from the Jewitt paper (listed in external links). -- Curps 06:09, 21 May 2006 (UTC) Hello Icek, you commented about a table I transcripted to the article. The table is exactly as it was in the book, and, in my opinion, you're saying the same thing that is written there, it's merely an interpretation issue. I don't know how one could make it clearer though. -- Rend 04:55, 14 April 2007 (UTC) Feynman point probabilityI think you must have made an error somewhere. When I do the naive calculation I get 0.07617%, which agrees well with what the source says. Actually that way of computing it is not quite correct, because it assumes that all 762 possible ways of getting an early 999999 are independent, which they aren't (say, if there's a 999999 at position 123, the chance of finding a 999999 also at position 124 is 1/10). This makes the right answer a bit less than 0.07617%, but it cannot be what you're getting at, for even if we look for 999999's at positions that are multiples of 6 (such that the possibilities are trivially independent), I get which is still larger than your value. –Henning Makholm 01:13, 24 June 2007 (UTC) Religiosity and IntelligenceHi IceK. FYI- I've questioned your deletion of the studies by the (Australian) National Church Life Survey, and the assumption that, being church funded, it is biased towards church friendly results. See full comment at the talk page [1] . I can understand your comment, but believe it to be incorrect. WotherspoonSmith 11:05, 9 July 2007 (UTC) Thanks for your work on the table, but what's with changing the numbers? I doubt I would have typed them all in incorrectly, so unless there's a mistake in the book I can't imagine why you would change them. Richard001 00:14, 29 August 2007 (UTC)
Hi there. You may want to keep an eye on the table. I've made a couple of minor amendments to reflect the range of values in the citations utilised, and I've added a footnote. An argumentive citation tag was subseqently added, which I have now removed. I don't have access to McMurry (1998),[1] but I do have Guyton (1991),[2] and 2006,[3] as well as McLaughlin & Margolskee (1994),[4] and I can see the tables with their figures as I write. And of course these publications should be available at any reasonably sized public library, and any half-decent university (i.e. they're not obscure publications). I did have a look for something online that matches the tabulated data, and provided a couple of citations to that effect.[5][6] Looking at Schiffman et al (2000),[7] one has to calculate the indices, which not everyone will want or be able to do (I did that sort of exercise some years ago for a number of articles, including some by Schiffman, but I'm not in a position to spend time on such an exercise again). So I relocated that reference to the "General" section. I left McMurry in place, because I have to assume that it contains the figures cited, just as others have to assume that my citations do. The points raised by the IP editor are not without merit, just not justified for the table. They pertain to the question of how the figures are derived. However, since the figures are directly readable from available texts, the issues raised by the IP editor are not valid for the table itself. Rather, they belong in a section on these methodological issues. Regards Wotnow (talk) 13:03, 15 September 2010 (UTC) Update: I've amended one citation in the sweetness compounds table (Srivastava & Rastogito 2003) include a url going straight to the relevant table in the text, as my own success at viewing the table from the title's url varies. While the mere fact of citations (Guyton & Hall, or McLaughlin & Margolskee, etc - but any citation on any thing) not being freely available via internet does not make them invalid, I find skepticism of those unfamiliar with a given citation understandable. Given this, I endeavour to find some sort of online citation that either suffices in itself, or corroborates an offline citation to sufficiently satisfy verification. However, no matter how much better one gets at doing this, it can still be a time-consuming effort. I do think it's worth it though. Most importantly it simply demonstrate that it's possible to do so for the sake of editors astute enough to realise this. If others pick up on such strategies, eventually the pool of people who do this increases, although it will always be a minority, as with many things in life. Wotnow (talk) 21:37, 15 September 2010 (UTC)
Hi. PNAS is a scientific journal that accepts research articles for publication through direct as well as indirect submission. If you have friends in the National Academy of Sciences, then they can "communicate" a maximum of two articles per year to PNAS via "Track 1". These articles do not go through the regular/normal procedure of peer review. You can find that "Cells infected with scrapie and Creutzfeldt–Jakob disease agents produce intracellular 25-nm virus-like particles" PNAS | February 6, 2007 | vol. 104 | no. 6 | 1965-1970 has been "communicated" by someone called Sheldon Penman, who is indeed a member of the NAS. If you read the said article carefully, you will find that in Figure 2D, the number of N2a+22L cells containing the so-called "virus-like particles" is less than 10%. Is it well known that N2a cells, like a lot of historical cell lines, are infected with many retroviruses that may or may not have anything to do with neurodegeneration.Edchoi 16:51, 27 September 2007 (UTC)
April foolsI've reverted your edit to Paramecium. As far as I can tell it was just a coincidence that the journal article was published on April 1st. If you know differently then please revert me, but it does seem feasible to me. Smartse (talk) 20:06, 4 September 2010 (UTC)
Formulae to calculate celestial pole coordinates of planetsMarsI just replied it in [2] so you shall look at it and reply it to me. BlueEarth (talk | contribs) 21:31, 7 September 2010 (UTC) ExoplanetsDo you want to look at my formulas to calculate the celestial pole coordinates of exoplanets? Reply it to me about what you think about those formulae. BlueEarth (talk | contribs) 21:58, 14 September 2010 (UTC) Pioneer 10Hi, way back in 2003 a few edits where made to an article that has in the meantime been merged with Attitude dynamics and control by a non-registered user which may be you (I apologize if it wasn't you). Somewhere in these edits, the claim that Pioneer 10 used (small) solar sails for attitude control was inserted. The only confirmation for this which I could find on nasa.gov is this, and it is more a mention-in-passing and doesn't seem very reliable as it is in a general text on solar sails written by a student. Where did you (if you did indeed make this edit) get that information from? Thanks in advance for the answer. Icek (talk) 16:49, 22 March 2008 (UTC) I want to add that the text on nasa.gov is from May 2006, so this student may well have used Wikipedia as his source. Icek (talk) 13:38, 7 April 2008 (UTC)
Proposed Image DeletionA deletion discussion has just been created at Category talk:Unclassified Chemical Structures, which may involve one or more orphaned chemical structures, that has you user name in the upload history. Please feel free to add your comments. Ronhjones (Talk) 22:54, 10 June 2011 (UTC) All files in category Unclassified Chemical Structures listed for deletionOne or more of the files that you uploaded or altered has been listed at Wikipedia:Files for deletion. Please see the discussion to see why this is (you may have to search for the title of the image to find its entry), if you are interested in it/them not being deleted. Thank you. Delivered by MessageDeliveryBot on behalf of MGA73 (talk) at 17:58, 28 November 2011 (UTC). Barlow's lawIcek, it's taken 2-1/2 years to get to it, but I and another editor are finally seriously looking into the question you raised at Talk:Barlow's law. Please come on over and take a look. —Ben Kovitz (talk) 00:27, 3 June 2012 (UTC) Question about old relativistic rocket editHi, in this 2006 edit to the relativistic rocket page you edited the "specific impulse" section to read as follows (version here):
I was wondering, where do these equations and numbers come from? The table is confusing because in some cases the relation between and does not seem to match the equation given earlier, , for a rocket with no external energy source; for example, "proton-antiproton annihilation, using only charged pions" is said in the table to have , plugging that into the equation gives , but the table gives . In addition, the figures for for "nuclear fission" and "nuclear fusion" seem to be far higher than what I find given in other sources. The two sources here and here give specific impulse in units of time, but the specific impulse page mentions that you can convert specific impulse in units of time to specific impulse in units of velocity by multiplying by g=9.8 meters/second^2, meaning the specific impulse for fission of 500-3000 seconds given on the first page translates to 4900-29400 m/s = 1.6*10-5 c to 9.8*10-5 c, far smaller than the value 0.04 c given on your table. And the second page (a pdf file) says on p. 6 that the upper value for specific impulse in a "gas core" fission rocket would be around 7000 seconds, or 68600 m/s, or 2.3*10-4 c, still far smaller that 0.04 c. Likewise, for fusion, the first page gives an upper limit of 105 seconds or 9.8 * 105 m/s or 0.003 c, and the second page gives around 2 * 105 seconds or 0.006 c for a fusion rocket on p. 7, but then on p. 22 they note that the plans for Project Daedalus, which was supposed to use an advanced form of fusion pulse propulsion, were calculated to reach a specific impulse of 106 seconds or 0.03 c...but all of these figures for the specific impulse of fusion rockets are much smaller than the value given on your table of 0.119 c. Hypnosifl (talk) 21:38, 20 August 2012 (UTC)
Regarding the proton-antiproton annihilation: I am sorry, it seems like I messed up that one. In Robert L. Forward's proposal for such a propulsion you can find the branching ratios of the various annihilation channels on page 109. Using the most common channels (without kaons and photons), I can quickly estimate (energies are in MeV):
Here "total energy" is the sum of the rest energies of the proton and the antiproton (1876.544026 MeV); the remaining kinetic energy is the total energy minus the rest energies of the pions generated (139.57018 MeV for the charged pion and 134.9766 MeV for the neutral pion). And I assume that the kinetic energy is (on average) equally distributed among the particles (this is only approximately correct because the masses of neutral and charged pions are not exactly equal). A reliable source for the proton and pion masses is the Particle Data Group (mesons including pions and baryons including protons). So what I intended as η or fraction of mass converted to energy is 0.60072 and what I should have used as η in the formula for only using charged pions is 0.39408, resulting in Δv/c = 0.796.
Regarding the specific impulse for nuclear fusion and nuclear fission: That is why it says "assuming no losses", i.e. these are the absolute physical limits for any kind of rocket propulsion. Icek (talk) 22:06, 21 August 2012 (UTC)
Relativistic momentum of the exhaust (which leaves with velocity , and has mass different from ) is
Some fraction of the fuel mass is converted to kinetic energy, so that the mass of the exhaust is
And the total relativistic energies of fuel (at rest relative to the spacecraft) and exhaust (moving) must be the same
Substituting in terms of and and dividing by and yields
Solving this equation for :
Now we can substitute back into the momentum of the exhaust:
And therefore the specific impulse is:
Regarding the calculation of proton-antiproton annihilation, I just noticed that I made a mistake in my reply from August 21 (and I was more correct in 2006...). The table from above lacks the masses of the charged pions, and further it lacks the actual and values: Only from the values we should make a probability-weighted average.
So the result is an of 0.57 rather than 0.56 (the value I put into the article in 2006). Let me clarify by giving you this table:
Regarding the rocket equation, I am just considering the tangential inertial reference frame (i.e. an infinitesimal time interval). Otherwise the quantity would not be useful, as it would no only depend on the kind of fuel and the kind of rocket engine, but also on the mass ratio of fueled and empty rocket: A rocket containing just a tiny amount of fuel won't be accelerated much, and the exhaust will have almost the same velocity relative to the rest frame and relative to the rocket after burnout. With a lot of fuel, some of it will be ejected from the rocket engine when the rocket is already moving at a high speed, thus the speed of the exhaust in the rest frame will be lower on average. And a specific impulse also only seems to make sense to me in the tangential inertial frame, even classically (if you calculate the final classical momentum from the Tsiolkovsky equation and divide it by the fuel mass, the result depends on the mass ratio). As for your energy equation taking into account the movement of the ship, let's have a look at it:
We can get rid of the infinitesimal quantity in the denominator of the right hand side of the sum on the right hand side by calculating the Taylor series (in ) and ignoring everything except constant and linear terms. Because only the square of occurs to begin with, there will be no linear term in the Taylor expansion, and the denominator indeed becomes 1:
Now the ship's rest energy cancels on both sides of the equation and we can rearrange the rest so that it's almost what I used in my derivation:
You are right that it's more rigorous to use differential quantities; the result of the derivation is again the same formula for the relation of specific impulse and . More informally I would say that we only look at a little bit of fuel at a time, and that little bit is far less massive than the ship, resulting in almost no change in velocity or momentum of the ship.
Icek (talk) 20:24, 24 August 2012 (UTC)
File:Cyclades-sat.png listed for deletionA file that you uploaded or altered, File:Cyclades-sat.png, has been listed at Wikipedia:Files for deletion. Please see the discussion to see why this is (you may have to search for the title of the image to find its entry), if you are interested in it not being deleted. Thank you. Bulwersator (talk) 21:07, 28 August 2012 (UTC) Re: BenzaldehydeHi! Sorry for the late reply, lately I'm no longer as active as I used to be on Wikipedia. Turning to your question: you're correct in that I did not enter a reference for the water solubility back then, my bad... Can't remember where I found that data, at the time I was working in a chemistry lab so it's possible I found that value on the product MSDS we had in the lab. Unfortunately I have no chance to check that MSDS any longer. A quick google search led me here http://www.chem.unep.ch/irptc/sids/oecdsids/100527.pdf It reports a water solubility of 6.55 g/L @ 25°C for benzaldehyde, but of course this is for 25°C, not 20°C where solubility is bound to be lower. Given all the above I think your correction sounds good to me, thanks for noticing the discrepancy! Berserker79 (talk) 10:15, 30 September 2012 (UTC) Seems okThis answer seems ok to me. What's wrong with it? Sławomir Biały (talk) 14:58, 5 April 2014 (UTC)
Your account will be renamedHello, The developer team at Wikimedia is making some changes to how accounts work, as part of our on-going efforts to provide new and better tools for our users like cross-wiki notifications. These changes will mean you have the same account name everywhere. This will let us give you new features that will help you edit and discuss better, and allow more flexible user permissions for tools. One of the side-effects of this is that user accounts will now have to be unique across all 900 Wikimedia wikis. See the announcement for more information. Unfortunately, your account clashes with another account also called Icek. To make sure that both of you can use all Wikimedia projects in future, we have reserved the name Icek~enwiki that only you will have. If you like it, you don't have to do anything. If you do not like it, you can pick out a different name. If you think you might own all of the accounts with this name and this message is in error, please visit Special:MergeAccount to check and attach all of your accounts to prevent them from being renamed. Your account will still work as before, and you will be credited for all your edits made so far, but you will have to use the new account name when you log in. Sorry for the inconvenience. Yours, 00:40, 20 March 2015 (UTC) RenamedThis account has been renamed as part of single-user login finalisation. If you own this account you can log in using your previous username and password for more information. If you do not like this account's new name, you can choose your own using this form after logging in: Special:GlobalRenameRequest. -- Keegan (WMF) (talk) 13:59, 22 April 2015 (UTC) Disambiguation link notification for August 23Hi. Thank you for your recent edits. Wikipedia appreciates your help. We noticed though that when you edited Franz Wegner, you added a link pointing to the disambiguation page Heisenberg model. Such links are almost always unintended, since a disambiguation page is merely a list of "Did you mean..." article titles. Read the FAQ • Join us at the DPL WikiProject. It's OK to remove this message. Also, to stop receiving these messages, follow these opt-out instructions. Thanks, DPL bot (talk) 09:57, 23 August 2015 (UTC) Hi, ArbCom Elections 2016: Voting now open!Hello, Icek~enwiki. Voting in the 2016 Arbitration Committee elections is open from Monday, 00:00, 21 November through Sunday, 23:59, 4 December to all unblocked users who have registered an account before Wednesday, 00:00, 28 October 2016 and have made at least 150 mainspace edits before Sunday, 00:00, 1 November 2016. The Arbitration Committee is the panel of editors responsible for conducting the Wikipedia arbitration process. It has the authority to impose binding solutions to disputes between editors, primarily for serious conduct disputes the community has been unable to resolve. This includes the authority to impose site bans, topic bans, editing restrictions, and other measures needed to maintain our editing environment. The arbitration policy describes the Committee's roles and responsibilities in greater detail. If you wish to participate in the 2016 election, please review the candidates' statements and submit your choices on the voting page. MediaWiki message delivery (talk) 22:08, 21 November 2016 (UTC) ArbCom 2017 election voter messageHello, Icek~enwiki. Voting in the 2017 Arbitration Committee elections is now open until 23.59 on Sunday, 10 December. All users who registered an account before Saturday, 28 October 2017, made at least 150 mainspace edits before Wednesday, 1 November 2017 and are not currently blocked are eligible to vote. Users with alternate accounts may only vote once. The Arbitration Committee is the panel of editors responsible for conducting the Wikipedia arbitration process. It has the authority to impose binding solutions to disputes between editors, primarily for serious conduct disputes the community has been unable to resolve. This includes the authority to impose site bans, topic bans, editing restrictions, and other measures needed to maintain our editing environment. The arbitration policy describes the Committee's roles and responsibilities in greater detail. If you wish to participate in the 2017 election, please review the candidates and submit your choices on the voting page. MediaWiki message delivery (talk) 18:42, 3 December 2017 (UTC) ArbCom 2018 election voter messageHello, Icek~enwiki. Voting in the 2018 Arbitration Committee elections is now open until 23.59 on Sunday, 3 December. All users who registered an account before Sunday, 28 October 2018, made at least 150 mainspace edits before Thursday, 1 November 2018 and are not currently blocked are eligible to vote. Users with alternate accounts may only vote once. The Arbitration Committee is the panel of editors responsible for conducting the Wikipedia arbitration process. It has the authority to impose binding solutions to disputes between editors, primarily for serious conduct disputes the community has been unable to resolve. This includes the authority to impose site bans, topic bans, editing restrictions, and other measures needed to maintain our editing environment. The arbitration policy describes the Committee's roles and responsibilities in greater detail. If you wish to participate in the 2018 election, please review the candidates and submit your choices on the voting page. MediaWiki message delivery (talk) 18:42, 19 November 2018 (UTC) ArbCom 2019 election voter messageRingdownHi, thanks for replying to my question on Reference Desk. Can you please look at Wikipedia:Reference_desk/Archives/Science/2020_April_26#Ringdown_and_no-hair_theorem and see if I understood you correctly? 93.136.114.41 (talk) 16:36, 4 May 2020 (UTC)
ArbCom 2020 Elections voter messageArbCom 2021 Elections voter messageArbCom 2024 Elections voter messageHello! Voting in the 2024 Arbitration Committee elections is now open until 23:59 (UTC) on Monday, 2 December 2024. All eligible users are allowed to vote. Users with alternate accounts may only vote once. The Arbitration Committee is the panel of editors responsible for conducting the Wikipedia arbitration process. It has the authority to impose binding solutions to disputes between editors, primarily for serious conduct disputes the community has been unable to resolve. This includes the authority to impose site bans, topic bans, editing restrictions, and other measures needed to maintain our editing environment. The arbitration policy describes the Committee's roles and responsibilities in greater detail. If you wish to participate in the 2024 election, please review the candidates and submit your choices on the voting page. If you no longer wish to receive these messages, you may add |