In graph theory, a uniquely colorable graph is a k-chromatic graph that has only one possible (proper) k-coloring up to permutation of the colors. Equivalently, there is only one way to partition its vertices into kindependent sets and there is no way to partition them into k − 1 independent sets.
Examples
A complete graph is uniquely colorable, because the only proper coloring is one that assigns each vertex a different color.
Every connected bipartite graph is uniquely 2-colorable. Its 2-coloring can be obtained by choosing a starting vertex arbitrarily, coloring the vertices at even distance from the starting vertex with one color, and coloring the vertices at odd distance from the starting vertex with the other color.[2]
Properties
A uniquely k-colorable graph G with n vertices has at least m ≥ (k−1)n − k(k−1)/2 edges. Equality holds when G is a (k−1)-tree.[3]
Related concepts
Minimal imperfection
A minimal imperfect graph is a graph in which every subgraph is perfect. The deletion of any vertex from a minimal imperfect graph leaves a uniquely colorable subgraph.
Unique edge colorability
A uniquely edge-colorable graph is a k-edge-chromatic graph that has only one possible (proper) k-edge-coloring up to permutation of the colors. The only uniquely 2-edge-colorable graphs are the paths and the cycles. For any k, the starsK1,k are uniquely k-edge-colorable. Moreover, Wilson (1976) conjectured and Thomason (1978) proved that, when k ≥ 4, they are also the only members in this family. However, there exist uniquely 3-edge-colorable graphs that do not fit into this classification, such as the graph of the triangular pyramid.
If a cubic graph is uniquely 3-edge-colorable, it must have exactly three Hamiltonian cycles, formed by the edges with two of its three colors, but some cubic graphs with only three Hamiltonian cycles are not uniquely 3-edge-colorable.[4]
Every simple planar cubic graph that is uniquely 3-edge-colorable contains a triangle,[1] but W. T. Tutte (1976) observed that the generalized Petersen graphG(9,2) is non-planar, triangle-free, and uniquely 3-edge-colorable. For many years it was the only known such graph, and it had been conjectured to be the only such graph[5] but now infinitely many triangle-free non-planar cubic uniquely 3-edge-colorable graphs are known.[6]
Mahmoodian, E. S. (1998), "Defining sets and uniqueness in graph colorings: a survey", Journal of Statistical Planning and Inference, 73 (1–2): 85–89, doi:10.1016/S0378-3758(98)00053-6, MR1655213.
Mahmoodian, E. S.; Shokrollahi, M. A. (1995), "Open problems at the combinatorics workshop of AIMC25 (Tehran, 1994)", in C. J., Colbourn; E. S., Mahmoodian (eds.), Combinatorics Advances, Mathematics and its applications, vol. 329, Dordrecht; Boston; London: Kluwer Academic Publishers, pp. 321–324.
Thomason, A. G. (1978), "Hamiltonian cycles and uniquely edge colourable graphs", Advances in Graph Theory (Cambridge Combinatorial Conf., Trinity College, Cambridge, 1977), Annals of Discrete Mathematics, vol. 3, pp. 259–268, MR0499124.
Thomason, Andrew (1982), "Cubic graphs with three Hamiltonian cycles are not always uniquely edge colorable", Journal of Graph Theory, 6 (2): 219–221, doi:10.1002/jgt.3190060218, MR0655209.
Truszczyński, M. (1984), "Some results on uniquely colourable graphs", in Hajnal, A.; Lovász, L.; Sós, V. T. (eds.), Finite and Infinite Sets. Vol. I, II. Proceedings of the sixth Hungarian combinatorial colloquium held in Eger, July 6–11, 1981, Colloq. Math. Soc. János Bolyai, vol. 37, North-Holland, Amsterdam, pp. 733–748, MR0818274.
Tutte, William T. (1976), "Hamiltonian circuits", Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo I, Accad. Naz. Lincei, Rome, pp. 193–199. Atti dei Convegni Lincei, No. 17, MR0480185. As cited by belcastro & Haas (2015).
Wilson, R. J. (1976), "Problem 2", in Nash-Williams, C. St. J. A.; Sheehan, J. (eds.), Proc. British Comb. Conf. 1975, Winnipeg: Utilitas Math., p. 696. As cited by Thomason (1978).