Splicing factor U2AF 35 kDa subunit is a protein that in humans is encoded by the U2AF1gene.[3][4][5]
Function
This gene belongs to the splicing factor SR family of genes [citation needed]. U2AF1 is a subunit of the U2 Auxiliary Factor complex alongside a larger subunit, U2AF2. U2AF1 is a non-snRNP protein required for the binding of U2snRNP to the pre-mRNA branch site. This gene encodes a small (~35 kDa) subunit which plays a critical role in RNA splicing by recognizing and binding to AG nucleotides at the 3’ splice site to facilitate spliceosome assembly.[6]Alternatively spliced transcript variants encoding different isoforms have been identified [citation needed]. Somatic mutations in U2AF1 have been found in a range of human cancers, with a distinctive pattern of these mutations at the zinc fingers implicating a functional role under selection.[7] In lung cancers, these mutations affect alternative splicing of several transcripts, including oncogenic ROS1 fusions.[8]
U2af1 conditional deletion in mouse hematopoietic system leads to early lethality suggesting its important for hematopoietic stem cell maintenance and function {https://doi.org/10.1038/s41375-020-01116-x }.
Interactions
U2 small nuclear RNA auxiliary factor 1 has been shown to interact with:
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^Lalioti MD, Gos A, Green MR, Rossier C, Morris MA, Antonarakis SE (January 1997). "The gene for human U2 snRNP auxiliary factor small 35-kDa subunit (U2AF1) maps to the progressive myoclonus epilepsy (EPM1) critical region on chromosome 21q22.3". Genomics. 33 (2): 298–300. doi:10.1006/geno.1996.0196. PMID8660980.
^Kalcheva I, Plass C, Sait S, Eddy R, Shows T, Watkins-Chow D, Camper S, Shibata H, Ueda T, Takagi N (Dec 1994). "Comparative mapping of the imprinted U2afbpL gene on mouse chromosome 11 and human chromosome 5". Cytogenet Cell Genet. 68 (1–2): 19–24. doi:10.1159/000133881. PMID7956352.
^Imielinski M, Berger AG, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A, Sougnez C, Auclair A, Lawrence MS, Stojanov P, Cibulskis K, Choi K, de Waal L, Sharifnia T, Brooks A, Greulich H, Banerji S, Zander T, Seidel D, Leenders F, Ansén S, Ludwig C, Engel-Riedel W, Stoelben E, Wolf J, Goparju C, Thompson K, Winckler W, Kwiatkowski D, Johnson BE, Jänne PA, Miller VA, Pao W, Travis WD, Pass HI, Gabriel SB, Lander ES, Thomas RK, Garraway LA, Getz G, et al. (2012). "Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing". Cell. 150 (6): 1107–1120. doi:10.1016/j.cell.2012.08.029. PMC3557932. PMID22980975.
^Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID16189514. S2CID4427026.
Wu JY, Maniatis T (1994). "Specific interactions between proteins implicated in splice site selection and regulated alternative splicing". Cell. 75 (6): 1061–1070. doi:10.1016/0092-8674(93)90316-I. PMID8261509. S2CID22951690.
Lallena MJ, Martínez C, Valcárcel J, Correas I (1998). "Functional association of nuclear protein 4.1 with pre-mRNA splicing factors". J. Cell Sci. 111 (14): 1963–71. doi:10.1242/jcs.111.14.1963. PMID9645944.
Neubauer G, King A, Rappsilber J, Calvio C, Watson M, Ajuh P, Sleeman J, Lamond A, Mann M (1998). "Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex". Nat. Genet. 20 (1): 46–50. doi:10.1038/1700. PMID9731529. S2CID585778.