Streak cameraA streak camera is an instrument for measuring the variation in a pulse of light's intensity with time. They are used to measure the pulse duration of some ultrafast laser systems and for applications such as time-resolved spectroscopy and LIDAR. Mechanical typesMechanical streak cameras use a rotating mirror or moving slit system to deflect the light beam. They are limited in their maximum scan speed and thus temporal resolution.[1] Optoelectronic typeOptoelectronic streak cameras work by directing the light onto a photocathode, which when hit by photons produces electrons via the photoelectric effect. The electrons are accelerated in a cathode-ray tube and pass through an electric field produced by a pair of plates, which deflects the electrons sideways. By modulating the electric potential between the plates, the electric field is quickly changed to give a time-varying deflection of the electrons, sweeping the electrons across a phosphor screen at the end of the tube.[2] A linear detector, such as a charge-coupled device (CCD) array is used to measure the streak pattern on the screen, and thus the temporal profile of the light pulse.[3] The time-resolution of the best optoelectronic streak cameras is around 180 femtoseconds.[4] Measurement of pulses shorter than this duration requires other techniques such as optical autocorrelation and frequency-resolved optical gating (FROG).[5] In December 2011, a team at MIT released images combining the use of a streak camera with repeated laser pulses to simulate a movie with a frame rate of one trillion frames per second.[6] This was surpassed in 2020 by a team from Caltech that achieved frame rates of 70 trillion fps.[7] See also
References
|