Theorem. Let be a strongly continuous one-parameter unitary group. Then there exists a unique (possibly unbounded) operator , that is self-adjoint on and such that
The domain of is defined by
Conversely, let be a (possibly unbounded) self-adjoint operator on Then the one-parameter family of unitary operators defined by
The operator is called the infinitesimal generator of Furthermore, will be a bounded operator if and only if the operator-valued mapping is norm-continuous.
The infinitesimal generator of a strongly continuous unitary group may be computed as
with the domain of consisting of those vectors for which the limit exists in the norm topology. That is to say, is equal to times the derivative of with respect to at . Part of the statement of the theorem is that this derivative exists—i.e., that is a densely defined self-adjoint operator. The result is not obvious even in the finite-dimensional case, since is only assumed (ahead of time) to be continuous, and not differentiable.
Example
The family of translation operators
is a one-parameter unitary group of unitary operators; the infinitesimal generator of this family is an extension of the differential operator
defined on the space of continuously differentiable complex-valued functions with compact support on Thus
In other words, motion on the line is generated by the momentum operator.
Applications
Stone's theorem has numerous applications in quantum mechanics. For instance, given an isolated quantum mechanical system, with Hilbert space of states H, time evolution is a strongly continuous one-parameter unitary group on . The infinitesimal generator of this group is the system Hamiltonian.
Stone's Theorem can be recast using the language of the Fourier transform. The real line is a locally compact abelian group. Non-degenerate *-representations of the group C*-algebra are in one-to-one correspondence with strongly continuous unitary representations of i.e., strongly continuous one-parameter unitary groups. On the other hand, the Fourier transform is a *-isomorphism from to the -algebra of continuous complex-valued functions on the real line that vanish at infinity. Hence, there is a one-to-one correspondence between strongly continuous one-parameter unitary groups and *-representations of As every *-representation of corresponds uniquely to a self-adjoint operator, Stone's Theorem holds.
Therefore, the procedure for obtaining the infinitesimal generator of a strongly continuous one-parameter unitary group is as follows:
Let be a strongly continuous unitary representation of on a Hilbert space.
Integrate this unitary representation to yield a non-degenerate *-representation of on by first defining and then extending to all of by continuity.
Use the Fourier transform to obtain a non-degenerate *-representation of on .
The precise definition of is as follows. Consider the *-algebra the continuous complex-valued functions on with compact support, where the multiplication is given by convolution. The completion of this *-algebra with respect to the -norm is a Banach *-algebra, denoted by Then is defined to be the enveloping -algebra of , i.e., its completion with respect to the largest possible -norm. It is a non-trivial fact that, via the Fourier transform, is isomorphic to A result in this direction is the Riemann-Lebesgue Lemma, which says that the Fourier transform maps to