Spheroidene

all-trans-spheroidene
Spheroidene skeletal formula
Names
IUPAC name
(3E)-1-Methoxy-3,4-didehydro-1,2,7',8'-tetrahydro-ψ,ψ-carotene
Systematic IUPAC name
(6E,10E,12E,14E,16E,18E,20E,22E,24E,26E,28E)-31-methoxy-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,12,14,16,18,20,22,24,26,28-dodecaene
Other names
  • Pigment Y
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
MeSH spheroidene
  • Key: FJOCMTHZSURUFA-AXYGSFPTSA-N
  • InChI=1S/C41H60O/c1-34(2)20-14-23-37(5)26-17-29-38(6)27-15-24-35(3)21-12-13-22-36(4)25-16-28-39(7)30-18-31-40(8)32-19-33-41(9,10)42-11/h12-13,15-16,18-22,24-28,30-32H,14,17,23,29,33H2,1-11H3/b13-12+,24-15+,25-16+,30-18+,32-19+,35-21+,36-22+,37-26+,38-27+,39-28+,40-31+
  • CC(=CCC/C(=C/CC/C(=C/C=C/C(=C/C=C/C=C(\C)/C=C/C=C(\C)/C=C/C=C(\C)/C=C/CC(C)(C)OC)/C)/C)/C)C
Properties
C41H60O
Molar mass 568.930 g·mol−1
Melting point 135–138 °C (275–280 °F; 408–411 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Spheroidene is a carotenoid pigment. It is a component of the photosynthetic reaction center of certain purple bacteria of the Rhodospirillaceae family, including Rhodobacter sphaeroides and Rhodopseudomonas sphaeroides.[1][2] Like other carotenoids, it is a tetraterpenoid. In purified form, it is a brick-red solid soluble in benzene.[2]

Spheroidene was discovered by microbiologist C. B. van Niel, who named it "pigment Y". It was renamed by Basil Weedon, who was the first to prepare it synthetically, and to determine its structure, in the mid-1960s.[2]

Function

Spheroidene is bound to the type II photosynthetic reaction center of purple bacteria, and together with the bacteriochlorophyll forms part of the light-harvesting complex. Spheroidene has two major functions in the complex. First, it absorbs visible light in the blue-green part of the visible spectrum (320–500 nm),[2] where bacteriochlorophyll has little absorbance. It then transfers energy to the bacteriochlorophyll via singlet–singlet energy transfer. In this manner the reaction center is able to harness more of the visible light spectrum than would be possible with bacteriochlorophyll alone.[3] Second, spheroidene quenches excited singlet states of bacteriochlorophyll by forming a stable triplet state. This quenching helps to prevent the formation of harmful singlet oxygen.[4][5] Other functions of spheroidene may include scavenging of singlet oxygen, nonradiative dissipation of excess light energy, and structural stabilization of the photosystem proteins.[4]

Spheroidene is thought to exist as the 15,15'-cis isomer, and not the all-trans isomer commonly shown in the literature, in native photosynthetic reaction centers.[6]

Biosynthesis

The proteins involved in spheroidene biosynthesis are encoded by a gene cluster.[7] Geranylgeranyl pyrophosphate (GGPP) is the precursor to spheroidene and the other carotenoids; two molecules of GGPP condense to form the symmetric tetraterpene phytoene. This molecule then undergoes three desaturations to form neurosporene, which is then hydroxylated, desaturated again, and methoxylated to produce spheroidene. In some species, spheroidene is further oxygenated to produce the ketone spheroidenone.[5]

See also

References

  1. ^ Harrison, D.M. (1986). "The biosynthesis of carotenoids". Natural Product Reports. 3 (3): 205–215. doi:10.1039/np9860300205. PMID 3534642.
  2. ^ a b c d Barber, M.S.; Jackman, L.M.; Manchand, P.S.; Weedon, B.C.L. (1966). "Carotenoids and related compounds. Part XVI. Structural and synthetic studies on spirilloxanthin, chloroxanthin, spheroidene, and spheroidenone". Journal of the Chemical Society C: 2166–2176. doi:10.1039/j39660002166.
  3. ^ Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J. (2016). "Carotenoids and Photosynthesis". Carotenoids in Nature. Subcellular Biochemistry. Vol. 79. pp. 111–139. doi:10.1007/978-3-319-39126-7_4. ISBN 978-3-319-39124-3. PMID 27485220.
  4. ^ a b Frank, Harry A.; Cogdell, Richard J. (1996). "Carotenoids in photosynthesis". Photochemistry and Photobiology. 63 (3): 257–264. doi:10.1111/j.1751-1097.1996.tb03022.x. ISSN 0031-8655. PMID 8881328. S2CID 1900488.
  5. ^ a b Maresca, Julia A.; Graham, Joel E.; Bryant, Donald A. (2008). "The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria". Photosynthesis Research. 97 (2): 121–140. doi:10.1007/s11120-008-9312-3. PMID 18535920. S2CID 2056720.
  6. ^ Mathies, Guinevere; van Hemert, Marc C.; Gast, Peter; Gupta, Karthick B. Sai Sankar; Frank, Harry A.; Lugtenburg, Johan; Groenen, Edgar J.J. (2011). "Configuration of spheroidene in the photosynthetic reaction center of Rhodobacter spheroides: A comparison of wild-type and reconstituted R26". Journal of Physical Chemistry A. 115 (34): 9552–9556. Bibcode:2011JPCA..115.9552M. doi:10.1021/jp112413d. hdl:1887/3570972. ISSN 1089-5639. PMID 21604722.
  7. ^ Naylor, Grant William; Addlesee, Hugh Alistair; Gibson, Lucien Charles Donald; Hunter, Christopher Neil (1999). "The photosynthesis gene cluster of Rhodobacter sphaeroides". Photosynthesis Research. 62 (2–3): 121–139. doi:10.1023/A:1006350405674. ISSN 0166-8595. S2CID 20340930.