Smoothness (probability theory)In probability theory and statistics, smoothness of a density function is a measure which determines how many times the density function can be differentiated, or equivalently the limiting behavior of distribution’s characteristic function. Formally, we call the distribution of a random variable X ordinary smooth of order β [1] if its characteristic function satisfies for some positive constants d0, d1, β. The examples of such distributions are gamma, exponential, uniform, etc. The distribution is called supersmooth of order β [1] if its characteristic function satisfies for some positive constants d0, d1, β, γ and constants β0, β1. Such supersmooth distributions have derivatives of all orders. Examples: normal, Cauchy, mixture normal. References
|