The prototypic member of the group, a phosphatase from a psychrophilic bacterium Shewanella, has been studied as a model to understand the mechanisms that contribute to the high catalytic efficiency of enzymes from organisms adapted to low temperatures.[5][6] Although PPP phosphatases in general are serine/threonine specific,[1]Shewanella phosphatase is tyrosine specific.[5] One of the two Shelph isoforms in plants is predicted to be located in the chloroplast.[4]
Due to the absence of Shelphs in humans, these phosphatases have recently attracted attention as potential targets for new antiparasitic drug discovery.[7][8][9]
References
^ abcCohen PT (July 1997). "Novel protein serine/threonine phosphatases: variety is the spice of life". Trends in Biochemical Sciences. 22 (7): 245–51. doi:10.1016/S0968-0004(97)01060-8. PMID9255065.
^ abTsuruta H, Aizono Y (January 2000). "Cloning of phosphatase I gene from a psychrophile, Shewanella sp., and some properties of the recombinant enzyme". Journal of Biochemistry. 127 (1): 143–9. doi:10.1093/oxfordjournals.jbchem.a022576. PMID10731677.
^Tsuruta H, Mikami B, Yamamoto C, Yamagata H (September 2008). "The role of group bulkiness in the catalytic activity of psychrophile cold-active protein tyrosine phosphatase". The FEBS Journal. 275 (17): 4317–28. doi:10.1111/j.1742-4658.2008.06575.x. PMID18647345.
^Kutuzov MA, Andreeva AV (October 2008). "Protein Ser/Thr phosphatases of parasitic protozoa". Molecular and Biochemical Parasitology. 161 (2): 81–90. doi:10.1016/j.molbiopara.2008.06.008. PMID18619495.