Self-propulsion

The sequence of images demonstrating the rotation of the self-propelled PVC tubing, containing camphor.[1] The time separation between frames is 0.33 s.

Self-propulsion is the autonomous displacement of nano-, micro- and macroscopic natural and artificial objects, containing their own means of motion.[2][3][4][5][6][7] Self-propulsion is driven mainly by interfacial phenomena.[8] Various mechanisms of self-propelling have been introduced and investigated, which exploited phoretic effects,[9] gradient surfaces, breaking the wetting symmetry of a droplet on a surface,[10][11] the Leidenfrost effect,[12][13][14] the self-generated hydrodynamic and chemical fields originating from the geometrical confinements,[15] and soluto- and thermo-capillary Marangoni flows.[16][17][1] Self-propelled system demonstrate a potential as micro-fluidics devices[18] and micro-mixers.[19] Self-propelled liquid marbles have been demonstrated.[14]

See also

References

  1. ^ a b Frenkel, Mark; Whyman, Gene; Shulzinger, Evgeny; Starostin, Anton; Bormashenko, Edward (2017-03-27). "Self-propelling rotator driven by soluto-capillary marangoni flows". Applied Physics Letters. 110 (13): 131604. arXiv:1710.09134. Bibcode:2017ApPhL.110m1604F. doi:10.1063/1.4979590.
  2. ^ Abbott, Nicholas L.; Velev, Orlin D. (2016). "Active particles propelled into researchers' focus". Current Opinion in Colloid & Interface Science. 21: 1–3. doi:10.1016/j.cocis.2016.01.002.
  3. ^ Shapere, Alfred; Wilczek, Frank (1987-05-18). "Self-propulsion at low Reynolds number". Physical Review Letters. 58 (20): 2051–2054. Bibcode:1987PhRvL..58.2051S. doi:10.1103/PhysRevLett.58.2051. PMID 10034637.
  4. ^ Bico, José; Quéré, David (September 2002). "Self-propelling slugs". Journal of Fluid Mechanics. 467 (1): 101–127. Bibcode:2002JFM...467..101B. doi:10.1017/s002211200200126x.
  5. ^ Ghosh, Ambarish; Fischer, Peer (2009-06-10). "Controlled Propulsion of Artificial Magnetic Nanostructured Propellers". Nano Letters. 9 (6): 2243–2245. Bibcode:2009NanoL...9.2243G. doi:10.1021/nl900186w. PMID 19413293.
  6. ^ Kühn, Philipp T.; de Miranda, Barbara Santos; van Rijn, Patrick (2015-12-01). "Directed Autonomic Flow: Functional Motility Fluidics". Advanced Materials. 27 (45): 7401–7406. doi:10.1002/adma.201503000. PMID 26467031.
  7. ^ Zhao, Guanjia; Pumera, Martin (2012-09-01). "Macroscopic Self-Propelled Objects". Chemistry: An Asian Journal. 7 (9): 1994–2002. doi:10.1002/asia.201200206. PMID 22615262.
  8. ^ Bormashenko, Edward (2017). Physics of Wetting Phenomena and Applications of Fluids on Surfaces. Berlin/Boston, United States: De Gruyter. ISBN 9783110444810. OCLC 1004545593.
  9. ^ Moran, Jeffrey L.; Posner, Jonathan D. (August 2011). "Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis". Journal of Fluid Mechanics. 680: 31–66. Bibcode:2011JFM...680...31M. doi:10.1017/jfm.2011.132.
  10. ^ Daniel, Susan; Chaudhury, Manoj K.; Chen, John C. (2001-01-26). "Fast Drop Movements Resulting from the Phase Change on a Gradient Surface". Science. 291 (5504): 633–636. Bibcode:2001Sci...291..633D. doi:10.1126/science.291.5504.633. PMID 11158672.
  11. ^ Daniel, Susan; Sircar, Sanjoy; Gliem, Jill; Chaudhury, Manoj K. (2004-05-01). "Ratcheting Motion of Liquid Drops on Gradient Surfaces". Langmuir. 20 (10): 4085–4092. doi:10.1021/la036221a. PMID 15969401.
  12. ^ Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Collier, C. Patrick; Lavrik, Nickolay V. (2014-01-28). "Asymmetric Wettability of Nanostructures Directs Leidenfrost Droplets". ACS Nano. 8 (1): 860–867. CiteSeerX 10.1.1.642.2490. doi:10.1021/nn405585m. PMID 24298880.
  13. ^ Lagubeau, Guillaume; Merrer, Marie Le; Clanet, Christophe; Quéré, David (May 2011). "Leidenfrost on a ratchet". Nature Physics. 7 (5): 395–398. Bibcode:2011NatPh...7..395L. doi:10.1038/nphys1925.
  14. ^ a b Bormashenko, Edward; Bormashenko, Yelena; Grynyov, Roman; Aharoni, Hadas; Whyman, Gene; Binks, Bernard P. (2015-05-07). "Self-Propulsion of Liquid Marbles: Leidenfrost-like Levitation Driven by Marangoni Flow". The Journal of Physical Chemistry C. 119 (18): 9910–9915. arXiv:1502.04292. Bibcode:2015arXiv150204292B. doi:10.1021/acs.jpcc.5b01307.
  15. ^ Uspal, W. E.; Popescu, M. N.; Dietrich, S.; Tasinkevych, M. (2015). "Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering". Soft Matter. 11 (3): 434–438. arXiv:1407.3216. Bibcode:2014SMat...11..434U. doi:10.1039/c4sm02317j. PMID 25466926.
  16. ^ Izri, Ziane; van der Linden, Marjolein N.; Michelin, Sébastien; Dauchot, Olivier (2014). "Self-Propulsion of Pure Water Droplets by Spontaneous Marangoni-Stress-Driven Motion". Physical Review Letters. 113 (24): 248302. arXiv:1406.5950. Bibcode:2014PhRvL.113x8302I. doi:10.1103/PhysRevLett.113.248302. PMID 25541808.
  17. ^ Nakata, Satoshi; Matsuo, Kyoko (2005-02-01). "Characteristic Self-Motion of a Camphor Boat Sensitive to Ester Vapor". Langmuir. 21 (3): 982–984. doi:10.1021/la047776o. PMID 15667178.
  18. ^ Teh, Shia-Yen; Lin, Robert; Hung, Lung-Hsin; Lee, Abraham P. (2008-01-29). "Droplet microfluidics". Lab on a Chip. 8 (2): 198–220. doi:10.1039/b715524g. PMID 18231657.
  19. ^ Nguyen, Nam-Trung; Wu, Zhigang (2005). "Micromixers—a review". Journal of Micromechanics and Microengineering. 15 (2): R1 – R16. Bibcode:2005JMiMi..15R...1N. doi:10.1088/0960-1317/15/2/r01.