In 1955, Sallen and Key used vacuum tubecathode follower amplifiers; the cathode follower is a reasonable approximation to an amplifier with unity voltage gain. Modern analog filter implementations may use operational amplifiers (also called op amps). Because of its high input impedance and easily selectable gain, an operational amplifier in a conventional non-inverting configuration is often used in VCVS implementations.[citation needed] Implementations of Sallen–Key filters often use an op amp configured as a voltage follower; however, emitter or source followers are other common choices for the buffer amplifier.
Sensitivity to component tolerances
VCVS filters are relatively resilient to component tolerance, but obtaining high Q factor may require extreme component value spread or high amplifier gain.[1] Higher-order filters can be obtained by cascading two or more stages.
Generic Sallen–Key topology
The generic unity-gain Sallen–Key filter topology implemented with a unity-gain operational amplifier is shown in Figure 1. The following analysis is based on the assumption that the operational amplifier is ideal.
Because the op amp is in a negative-feedback configuration, its and inputs must match (i.e., ). However, the inverting input is connected directly to the output , and so
If the component were connected to ground instead of to , the filter would be a voltage divider composed of the and components cascaded with another voltage divider composed of the and components. The buffer amplifier bootstraps the "bottom" of the component to the output of the filter, which will improve upon the simple two-divider case. This interpretation is the reason why Sallen–Key filters are often drawn with the op amp's non-inverting input below the inverting input, thus emphasizing the similarity between the output and ground.
An example of a unity-gain low-pass configuration is shown in Figure 2.
An operational amplifier is used as the buffer here, although an emitter follower is also effective. This circuit is equivalent to the generic case above with
The transfer function for this second-order unity-gain low-pass filter is
The factor determines the height and width of the peak of the frequency response of the filter. As this parameter increases, the filter will tend to "ring" at a single resonant frequency near (see "LC filter" for a related discussion).
Poles and zeros
This transfer function has no (finite) zeros and two poles located in the complex s-plane:
There are two zeros at infinity (the transfer function goes to zero for each of the terms in the denominator).
Design choices
A designer must choose the and appropriate for their application.
The value is critical in determining the eventual shape.
For example, a second-order Butterworth filter, which has maximally flat passband frequency response, has a of .
By comparison, a value of corresponds to the series cascade of two identical simple low-pass filters.
Because there are 2 parameters and 4 unknowns, the design procedure typically fixes the ratio between both resistors as well as that between the capacitors. One possibility is to set the ratio between and as versus and the ratio between and as versus . So,
As a result, the and expressions are reduced to
and
Starting with a more or less arbitrary choice for e.g. and , the appropriate values for and can be calculated in favor of the desired and . In practice, certain choices of component values will perform better than others due to the non-idealities of real operational amplifiers.[3] As an example, high resistor values will increase the circuit's noise production, whilst contributing to the DC offset voltage on the output of op amps equipped with bipolar input transistors.
Example
For example, the circuit in Figure 3 has and . The transfer function is given by
and, after the substitution, this expression is equal to
which shows how every combination comes with some combination to provide the same and for the low-pass filter. A similar design approach is used for the other filters below.
Input impedance
The input impedance of the second-order unity-gain Sallen–Key low-pass filter is also of interest to designers. It is given by Eq. (3) in Cartwright and Kaminsky[4] as
where and .
Furthermore, for , there is a minimal value of the magnitude of the impedance, given by Eq. (16) of Cartwright and Kaminsky,[4] which states that
Fortunately, this equation is well-approximated by[4]
for . For values outside of this range, the 0.34 constant has to be modified for minimal error.
Also, the frequency at which the minimal impedance magnitude occurs is given by Eq. (15) of Cartwright and Kaminsky,[4] i.e.,
This equation can also be well approximated using Eq. (20) of Cartwright and Kaminsky,[4] which states that
Application: high-pass filter
A second-order unity-gain high-pass filter with and is shown in Figure 4.
A second-order unity-gain high-pass filter has the transfer function
where undamped natural frequency and factor are discussed above in the low-pass filter discussion. The circuit above implements this transfer function by the equations
(as before) and
So
Follow an approach similar to the one used to design the low-pass filter above.
Application: bandpass filter
An example of a non-unity-gain bandpass filter implemented with a VCVS filter is shown in Figure 5. Although it uses a different topology and an operational amplifier configured to provide non-unity-gain, it can be analyzed using similar methods as with the generic Sallen–Key topology. Its transfer function is given by
The center frequency (i.e., the frequency where the magnitude response has its peak) is given by
The Q factor is given by
The voltage divider in the negative feedback loop controls the "inner gain" of the op amp:
If the inner gain is too high, the filter will oscillate.
^Sallen, R. P.; E. L. Key (March 1955). "A Practical Method of Designing RC Active Filters". IRE Transactions on Circuit Theory. 2 (1): 74–85. doi:10.1109/tct.1955.6500159. S2CID51640910.