The novelty of Fehlberg's method is that it is an embedded method from the Runge–Kutta family, meaning that it reuses the same intermediate calculations to produce two estimates of different accuracy, allowing for automatic error estimation. The method presented in Fehlberg's 1969 paper has been dubbed the RKF45 method, and is a method of order O(h4) with an error estimator of order O(h5).[1] By performing one extra calculation, the error in the solution can be estimated and controlled by using the higher-order embedded method that allows for an adaptive stepsize to be determined automatically.
The first row of coefficients at the bottom of the table gives the fifth-order accurate method, and the second row gives the fourth-order accurate method.
Implementing an RK4(5) Algorithm
The coefficients found by Fehlberg for Formula 1 (derivation with his parameter α2=1/3) are given in the table below, using array indexing of base 1 instead of base 0 to be compatible with most computer languages:
Fehlberg[2] outlines a solution to solving a system of n differential equations of the form:
to iterative solve for
where h is an adaptive stepsize to be determined algorithmically:
The solution is the weighted average of six increments, where each increment is the product of the size of the interval, , and an estimated slope specified by function f on the right-hand side of the differential equation.
Then the weighted average is:
The estimate of the truncation error is:
At the completion of the step, a new stepsize is calculated:[3]
If , then replace with and repeat the step. If , then the step is completed. Replace with for the next step.
The coefficients found by Fehlberg for Formula 2 (derivation with his parameter α2 = 3/8) are given in the table below, using array indexing of base 1 instead of base 0 to be compatible with most computer languages:
COEFFICIENTS FOR RK4(5), FORMULA 2 Table III in Fehlberg[2]
K
A(K)
B(K,L)
C(K)
CH(K)
CT(K)
L=1
L=2
L=3
L=4
L=5
1
0
25/216
16/135
-1/360
2
1/4
1/4
0
0
0
3
3/8
3/32
9/32
1408/2565
6656/12825
128/4275
4
12/13
1932/2197
-7200/2197
7296/2197
2197/4104
28561/56430
2197/75240
5
1
439/216
-8
3680/513
-845/4104
-1/5
-9/50
-1/50
6
1/2
-8/27
2
-3544/2565
1859/4104
-11/40
2/55
-2/55
In another table in Fehlberg,[2] coefficients for an RKF4(5) derived by D. Sarafyan are given:
COEFFICIENTS FOR Sarafyan's RK4(5), Table IV in Fehlberg[2]
^According to Hairer et al. (1993, §II.4), the method was originally proposed in Fehlberg (1969); Fehlberg (1970) is an extract of the latter publication.
Fehlberg, Erwin (1969) Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems. Vol. 315. National aeronautics and space administration.
Fehlberg, Erwin (1969). "Klassische Runge-Kutta-Nystrom-Formeln funfter und siebenter Ordnung mit Schrittweiten-Kontrolle". Computing. 4: 93–106. doi:10.1007/BF02234758. S2CID38715401.
Fehlberg, Erwin (1970). "Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme," Computing (Arch. Elektron. Rechnen), vol. 6, pp. 61–71. doi:10.1007/BF02241732
Sarafyan, Diran (1966) Error Estimation for Runge-Kutta Methods Through Pseudo-Iterative Formulas. Technical Report No. 14, Louisiana State University in New Orleans, May 1966.
Further reading
Fehlberg, E (1958). "Eine Methode zur Fehlerverkleinerung beim Runge-Kutta-Verfahren". Zeitschrift für Angewandte Mathematik und Mechanik. 38 (11/12): 421–426. Bibcode:1958ZaMM...38..421F. doi:10.1002/zamm.19580381102.
Fehlberg, E (1964). "New high-order Runge-Kutta formulas with step size control for systems of first and second-order differential equations". Zeitschrift für Angewandte Mathematik und Mechanik. 44 (S1): T17 –T29. doi:10.1002/zamm.19640441310.
Fehlberg, E (1972). "Klassische Runge-Kutta-Nystrom-Formeln mit Schrittweiten-Kontrolle fur Differentialgleichungen x.. = f(t,x)". Computing. 10: 305–315. doi:10.1007/BF02242243. S2CID37369149.
Fehlberg, E (1975). "Klassische Runge-Kutta-Nystrom-Formeln mit Schrittweiten-Kontrolle fur Differentialgleichungen x.. = f(t,x,x.)". Computing. 14: 371–387. doi:10.1007/BF02253548. S2CID30533090.
Handapangoda, C. C.; Premaratne, M.; Yeo, L.; Friend, J. (2008). "Laguerre Runge-Kutta-Fehlberg Method for Simulating Laser Pulse Propagation in Biological Tissue". IEEE Journal of Selected Topics in Quantum Electronics. 1 (14): 105–112. Bibcode:2008IJSTQ..14..105H. doi:10.1109/JSTQE.2007.913971. S2CID13069335..
Simos, T. E. (1995). "Modified Runge–Kutta–Fehlberg methods for periodic initial-value problems". Japan Journal of Industrial and Applied Mathematics. 12 (1): 109. doi:10.1007/BF03167384. S2CID120146558..