Ring-opening metathesis polymerisation Type of chain-growth polymerisation reaction involving cyclic olefins
In polymer chemistry , ring-opening metathesis polymerization (ROMP ) is a type of chain-growth polymerization involving olefin metathesis .[ 1] The reaction is driven by relieving ring strain in cyclic olefins .[ 2] A variety of heterogeneous and homogeneous catalysts have been developed for different polymers and mechanisms.[ 3] Heterogeneous catalysts are typical in large-scale commercial processes, while homogeneous catalysts are used in finer laboratory chemical syntheses.[ 4] Organometallic catalysts used in ROMP usually have transition metal centres, such as tungsten, rubidium, titanium, etc., with organic ligands .[ 5]
Heterogeneous catalysis
ROMP reaction giving polynorbornene. Like most commercial alkene metathesis processes, this reaction does not employ a well-defined molecular catalyst.
Heterogeneous catalysis consists of catalysts and substrates in different physical states. The catalyst is typically in solid phase.[ 6] The mechanism of heterogeneous ring-opening metathesis polymerization is still under investigation.[ 7]
Ring-opening metathesis polymerization of cyclic olefins has been commercialized since the 1970s.[ 4] Examples of polymers produced on an industrial level through ROMP catalysis are Vestenamer and Norsorex, among others.[ 8]
Mechanism
The mechanism of homogeneous ring-opening metathesis polymerization is well-studied. It is similar to any olefin metathesis reaction. Initiation occurs by forming an open coordination site on the catalyst. Propagation happens via a metallacycle intermediate formed after a 2+2 cycloaddition. When using a G3 catalyst, 2+2 cycloaddition is the rate determining step.[ 9]
Frontal ring-opening metathesis polymerization (FROMP) is a variation of ROMP. It is a polymerization system that only reacts on a localized zone.[ 10] One example of this system is the FROMP of dicyclopentadiene with a Grubbs' catalyst initiated by heat.[ 11]
See also
Further reading
Bano, Tahira; Zahoor, Ameer Fawad; Rasool, Nasir; Irfan, Muhammad; Mansha, Asim (June 2022). "Recent trends in Grubbs catalysis toward the synthesis of natural products: a review" . Journal of the Iranian Chemical Society . 19 (6): 2131– 2170. doi :10.1007/s13738-021-02463-x . ISSN 1735-207X .
Sveinbjörnsson, Benjamin R.; Weitekamp, Raymond A.; Miyake, Garret M.; Xia, Yan; Atwater, Harry A.; Grubbs, Robert H. (2012-09-04). "Rapid self-assembly of brush block copolymers to photonic crystals" . Proceedings of the National Academy of Sciences . 109 (36): 14332– 14336. Bibcode :2012PNAS..10914332S . doi :10.1073/pnas.1213055109 . PMC 3437898 . PMID 22912408 .
References
^ Buchmeiser, Michael R. (2009-01-28), Dubois, Philippe; Coulembier, Olivier; Raquez, Jean-Marie (eds.), "Ring-Opening Metathesis Polymerization" , Handbook of Ring-Opening Polymerization (1 ed.), Wiley, pp. 197– 225, doi :10.1002/9783527628407.ch8 , ISBN 978-3-527-31953-4 , retrieved 2024-12-02
^ Duda, Andrzej; Kowalski, Adam (2009-01-28), Dubois, Philippe; Coulembier, Olivier; Raquez, Jean-Marie (eds.), "Thermodynamics and Kinetics of Ring-Opening Polymerization" , Handbook of Ring-Opening Polymerization (1 ed.), Wiley, pp. 1– 51, doi :10.1002/9783527628407.ch1 , ISBN 978-3-527-31953-4 , retrieved 2024-12-02
^ Hilf, Stefan; Kilbinger, Andreas F. M. (2009-09-23). "Functional end groups for polymers prepared using ring-opening metathesis polymerization" . Nature Chemistry . 1 (7): 537– 546. Bibcode :2009NatCh...1..537H . doi :10.1038/nchem.347 . ISSN 1755-4330 . PMID 21378934 .
^ a b Kirk-Othmer, ed. (2001-01-26). Kirk-Othmer Encyclopedia of Chemical Technology (1 ed.). Wiley. doi :10.1002/0471238961.metanoel.a01 . ISBN 978-0-471-48494-3 .
^ Cowie, J. M. G.; Arrighi, V. (2008). Polymers: chemistry and physics of modern materials (3rd ed.). Boca Raton: CRC Press. ISBN 978-0-8493-9813-1 . OCLC 82473191 .
^ Ehrhorn, Henrike; Tamm, Matthias (March 2019). "Well-Defined Alkyne Metathesis Catalysts: Developments and Recent Applications" . Chemistry – A European Journal . 25 (13): 3190– 3208. doi :10.1002/chem.201804511 . ISSN 0947-6539 . PMID 30346054 .
^ Greenlee, Andrew J.; Weitekamp, Raymond A.; Foster, Jeffrey C.; Leguizamon, Samuel C. (2024-04-19). "PhotoROMP: The Future Is Bright" . ACS Catalysis . 14 (8): 6217– 6227. doi :10.1021/acscatal.4c00972 . ISSN 2155-5435 . PMC 11036397 . PMID 38660608 .
^ Mol, J. C. (2004-04-13). "Industrial applications of olefin metathesis" . Journal of Molecular Catalysis A: Chemical . The 15th. International Symposium on Olefin Metathesis and Related Chemistry. 213 (1): 39– 45. doi :10.1016/j.molcata.2003.10.049 . ISSN 1381-1169 .
^ Hyatt, Michael G.; Walsh, Dylan J.; Lord, Richard L.; Andino Martinez, José G.; Guironnet, Damien (2019-11-06). "Mechanistic and Kinetic Studies of the Ring Opening Metathesis Polymerization of Norbornenyl Monomers by a Grubbs Third Generation Catalyst" . Journal of the American Chemical Society . 141 (44): 17918– 17925. doi :10.1021/jacs.9b09752 . ISSN 0002-7863 .
^ Pojman, J.A. (2012), "Frontal Polymerization" , Polymer Science: A Comprehensive Reference , Elsevier, pp. 957– 980, doi :10.1016/b978-0-444-53349-4.00124-2 , ISBN 978-0-08-087862-1 , retrieved 2024-12-02
^ Moneypenny, Timothy P.; Liu, Huiying; Yang, Anna; Robertson, Ian D.; Moore, Jeffrey S. (2017-04-13). "Grubbs-inspired metathesis in the Moore group" . Journal of Polymer Science Part A: Polymer Chemistry . 55 (18): 2935– 2948. Bibcode :2017JPoSA..55.2935M . doi :10.1002/pola.28592 . ISSN 0887-624X .