Concept in mathematics
Regularity is a topic of the mathematical study of partial differential equations(PDE) such as Laplace's equation, about the integrability and differentiability of weak solutions. Hilbert's nineteenth problem was concerned with this concept.[1]
The motivation for this study is as follows.[2] It is often difficult to contrust a classical solution satisfying the PDE in regular sense, so we search for a weak solution at first, and then find out whether the weak solution is smooth enough to be qualified as a classical solution.
Several theorems have been proposed for different types of PDEs.
Elliptic Regularity theory
Let be an open, bounded subset of , denote its boundary as and the variables as . Representing the PDE as a partial differential operator acting on an unknown function of results in a BVP of the form where is a given function and and the operator is of the divergence form: then
- Interior regularity: If m is a natural number, (2) , is a weak solution, then for any open set V in U with compact closure, (3), where C depends on U, V, L, m, per se , which also holds if m is infinity by Sobolev embedding theorem.
- Boundary regularity: (2) together with the assumption that is indicates that (3) still holds after replacing V with U, i.e. , which also holds if m is infinity.
Counterexamples
Not every weak solution is smooth, for example, there may be discontinuities in the weak solutions of Conservation laws, called shock waves.[3]
References