In the rational reconstruction problem, one is given as input a value . That is,
is an integer with the property that . The rational number is unknown,
and the goal of the problem is to recover it from the given information.
In order for the problem to be solvable, it is necessary to assume that the modulus is sufficiently large relative to and .
Typically, it is assumed that a range for the possible values of and is known: and for some two
numerical parameters and . Whenever and a solution exists, the solution is unique and can be found efficiently.
One puts and . One then repeats the following steps until the first component of w becomes . Put , put z = v − qw. The new v and w are then obtained by putting v = w and w = z.
Then with w such that , one makes the second component positive by putting w = −w if . If and , then the fraction exists and and , else no such fraction exists.