Retinoblastoma-binding protein 6 is a protein that in humans is encoded by the RBBP6gene.[5][6][7]
Function
The retinoblastoma tumor suppressor (pRB) protein binds with many other proteins. In various human cancers, pRB suppresses cellular proliferation and is inactivated. Cell cycle-dependent phosphorylation regulates the activity of pRB. This gene encodes a protein which binds to underphosphorylated but not phosphorylated pRB. Multiple alternatively spliced transcript variants that encode different isoforms have been found for this gene.[7]
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^Sakai Y, Saijo M, Coelho K, Kishino T, Niikawa N, Taya Y (Nov 1995). "cDNA sequence and chromosomal localization of a novel human protein, RBQ-1 (RBBP6), that binds to the retinoblastoma gene product". Genomics. 30 (1): 98–101. doi:10.1006/geno.1995.0017. PMID8595913.
^Chibi M, Meyer M, Skepu A, G Rees DJ, Moolman-Smook JC, Pugh DJ (Dec 2008). "RBBP6 interacts with multifunctional protein YB-1 through its RING finger domain, leading to ubiquitination and proteosomal degradation of YB-1". Journal of Molecular Biology. 384 (4): 908–16. doi:10.1016/j.jmb.2008.09.060. PMID18851979.
Gao S, Witte MM, Scott RE (May 2002). "P2P-R protein localizes to the nucleolus of interphase cells and the periphery of chromosomes in mitotic cells which show maximum P2P-R immunoreactivity". Journal of Cellular Physiology. 191 (2): 145–54. doi:10.1002/jcp.10084. PMID12064457. S2CID25240477.
Scott RE, White-Grindley E, Ruley HE, Chesler EJ, Williams RW (Jul 2005). "P2P-R expression is genetically coregulated with components of the translation machinery and with PUM2, a translational repressor that associates with the P2P-R mRNA". Journal of Cellular Physiology. 204 (1): 99–105. doi:10.1002/jcp.20263. PMID15617101. S2CID24888360.
Beausoleil SA, Villén J, Gerber SA, Rush J, Gygi SP (Oct 2006). "A probability-based approach for high-throughput protein phosphorylation analysis and site localization". Nature Biotechnology. 24 (10): 1285–92. doi:10.1038/nbt1240. PMID16964243. S2CID14294292.