Concept in mathematical knot theory
In the mathematical field of knot theory , a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement .[ 1] [ 2] [ 3]
List of invariants
See also
References
^ a b Reshetikhin, N.; Turaev, V. G. (1991). "Invariants of 3-manifolds via link polynomials and quantum groups". Inventiones Mathematicae . 103 (3): 547–597. doi :10.1007/BF01239527 . MR 1091619 .
^
Kontsevich, Maxim (1993). "Vassiliev's knot invariants". Adv. Soviet Math . 16 : 137.
^
Watanabe, Tadayuki (2007). "Knotted trivalent graphs and construction of the LMO invariant from triangulations" . Osaka J. Math . 44 (2): 351. Retrieved 4 December 2012 .
^ Letzter, Gail (2004). "Invariant differential operators for quantum symmetric spaces, II". arXiv :math/0406194 .
^ Sawon, Justin (2000). "Topological quantum field theory and hyperkähler geometry". arXiv :math/0009222 .
^ Petit, Jerome (1999). "The invariant of Turaev-Viro from Group category" (PDF) . hal.archives-ouvertes.fr. Retrieved 2019-11-04 .
^ Lawton, Sean (June 28, 2007). "Generators of
SL
(
2
,
C
)
{\displaystyle \operatorname {SL} (2,\mathbb {C} )}
-Character Varieties of Arbitrary Rank Free Groups" (PDF) . The 7th KAIST Geometric Topology Fair . Archived from the original (PDF) on 20 July 2007. Retrieved 13 January 2022 .
Further reading
External links