In mathematics, the q -Laguerre polynomials , or generalized Stieltjes–Wigert polynomials P (α) n (x ;q ) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme introduced by Daniel S. Moak (1981 ). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010 , 14) give a detailed list of their properties.
Definition
The q -Laguerre polynomials are given in terms of basic hypergeometric functions and the q-Pochhammer symbol by
L
n
(
α
)
(
x
;
q
)
=
(
q
α
+
1
;
q
)
n
(
q
;
q
)
n
1
ϕ
1
(
q
−
n
;
q
α
+
1
;
q
,
−
q
n
+
α
+
1
x
)
.
{\displaystyle \displaystyle L_{n}^{(\alpha )}(x;q)={\frac {(q^{\alpha +1};q)_{n}}{(q;q)_{n}}}{}_{1}\phi _{1}(q^{-n};q^{\alpha +1};q,-q^{n+\alpha +1}x).}
Orthogonality
Orthogonality is defined by the unimono nature of the polynomials' convergence at boundaries in integral form.
References
Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series , Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press , ISBN 978-0-521-83357-8 , MR 2128719
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues , Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag , doi :10.1007/978-3-642-05014-5 , ISBN 978-3-642-05013-8 , MR 2656096
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Chapter 18: Orthogonal Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Moak, Daniel S. (1981), "The q-analogue of the Laguerre polynomials", J. Math. Anal. Appl. , 81 (1): 20– 47, doi :10.1016/0022-247X(81)90048-2 , MR 0618759