Probabilistic programming language
PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python . It can be used for Bayesian statistical modeling and probabilistic machine learning.
PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.[ 2] [ 3] [ 4] [ 5] [ 6]
It is a rewrite from scratch of the previous version of the PyMC software.[ 7]
Unlike PyMC2, which had used Fortran extensions for performing computations, PyMC relies on PyTensor, a Python library that allows defining, optimizing, and efficiently evaluating mathematical expressions involving multi-dimensional arrays.
From version 3.8 PyMC relies on ArviZ to handle plotting, diagnostics, and statistical checks. PyMC and Stan are the two most popular probabilistic programming tools.[ 8]
PyMC is an open source project, developed by the community and has been fiscally sponsored by NumFOCUS .[ 9]
PyMC has been used to solve inference problems in several scientific domains, including
astronomy ,[ 10] [ 11]
epidemiology ,[ 12] [ 13]
molecular biology,[ 14]
crystallography,[ 15] [ 16]
chemistry ,[ 17]
ecology[ 18] [ 19]
and psychology.[ 20]
Previous versions of PyMC were also used widely, for example in
climate science,[ 21]
public health,[ 22] neuroscience ,[ 23]
and parasitology.[ 24] [ 25]
After Theano announced plans to discontinue development in 2017,[ 26] the PyMC team evaluated TensorFlow Probability as a computational backend,[ 27] but decided in 2020 to fork Theano under the name Aesara.[ 28]
Large parts of the Theano codebase have been refactored and compilation through JAX [ 29] and Numba were added.
The PyMC team has released the revised computational backend under the name PyTensor and continues the development of PyMC.[ 30]
Inference engines
PyMC implements non-gradient-based and gradient-based Markov chain Monte Carlo (MCMC) algorithms for Bayesian inference and stochastic, gradient-based variational Bayesian methods for approximate Bayesian inference.
See also
Stan is a probabilistic programming language for statistical inference written in C++
ArviZ a Python library for exploratory analysis of Bayesian models
Bambi is a high-level Bayesian model-building interface based on PyMC
References
^ "Release 5.19.1" . 5 December 2024. Retrieved 11 December 2024 .
^ Abril-Pla O, Andreani V, Carroll C, Dong L, Fonnesbeck CJ, Kochurov M, Kumar R, Lao J, Luhmann CC, Martin OA, Osthege M, Vieira R, Wiecki T, Zinkov R. (2023) PyMC: a modern, and comprehensive probabilistic programming framework in Python. PeerJ Comput. Sci. 9:e1516 doi :10.7717/peerj-cs.1516
^ Salvatier J, Wiecki TV, Fonnesbeck C. (2016) Probabilistic programming in Python using PyMC3. PeerJ Computer Science 2:e55 doi :10.7717/peerj-cs.55
^ Martin, Osvaldo (2024). Bayesian Analysis with Python . Packt Publishing Ltd. ISBN 9781805127161 . Retrieved 24 February 2024 .
^ Martin, Osvaldo; Kumar, Ravin; Lao, Junpeng (2021). Bayesian Modeling and Computation in Python . CRC-press. pp. 1– 420. ISBN 9780367894368 . Retrieved 7 July 2022 .
^ Davidson-Pilon, Cameron (2015-09-30). Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference . Addison-Wesley Professional. ISBN 9780133902921 .
^ "documentation" . Retrieved 2017-09-20 .
^ "The Algorithms Behind Probabilistic Programming" . Retrieved 2017-03-10 .
^ "NumFOCUS Announces New Fiscally Sponsored Project: PyMC3" . NumFOCUS | Open Code = Better Science . Retrieved 2017-03-10 .
^ Greiner, J.; Burgess, J. M.; Savchenko, V.; Yu, H.-F. (2016). "On the Fermi-GBM Event 0.4 s after GW150914" . The Astrophysical Journal Letters . 827 (2): L38. arXiv :1606.00314 . Bibcode :2016ApJ...827L..38G . doi :10.3847/2041-8205/827/2/L38 . ISSN 2041-8205 . S2CID 3529170 .
^ Hilbe, Joseph M.; Souza, Rafael S. de; Ishida, Emille E. O. (2017-04-30). Bayesian Models for Astrophysical Data: Using R, JAGS, Python, and Stan . Cambridge University Press. ISBN 9781108210744 .
^ Brauner, Jan M.; Mindermann, Sören; Sharma, Mrinank; Johnston, David; Salvatier, John; Gavenčiak, Tom; Stephenson, Anna B.; Leech, Gavin; Altman, George; Mikulik, Vladimir; Norman, Alexander John; Monrad, Joshua Teperowski; Besiroglu, Tamay; Ge, Hong; Hartwick, Meghan A.; Teh, Yee Whye; Chindelevitch, Leonid; Gal, Yarin; Kulveit, Jan (2020-12-15). "Inferring the effectiveness of government interventions against COVID-19" . Science . 371 (6531): eabd9338. doi :10.1126/science.abd9338 . PMC 7877495 . PMID 33323424 .
^ Systrom, Kevin; Vladek, Thomas; Krieger, Mike. "Rt.live Github repository" . Rt.live . Retrieved 10 January 2021 .
^ Wagner, Stacey D.; Struck, Adam J.; Gupta, Riti; Farnsworth, Dylan R.; Mahady, Amy E.; Eichinger, Katy; Thornton, Charles A.; Wang, Eric T.; Berglund, J. Andrew (2016-09-28). "Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy" . PLOS Genetics . 12 (9): e1006316. doi :10.1371/journal.pgen.1006316 . ISSN 1553-7404 . PMC 5082313 . PMID 27681373 .
^ Sharma, Amit; Johansson, Linda; Dunevall, Elin; Wahlgren, Weixiao Y.; Neutze, Richard; Katona, Gergely (2017-03-01). "Asymmetry in serial femtosecond crystallography data" . Acta Crystallographica Section A . 73 (2): 93– 101. Bibcode :2017AcCry..73...93S . doi :10.1107/s2053273316018696 . ISSN 2053-2733 . PMC 5332129 . PMID 28248658 .
^ Katona, Gergely; Garcia-Bonete, Maria-Jose; Lundholm, Ida (2016-05-01). "Estimating the difference between structure-factor amplitudes using multivariate Bayesian inference" . Acta Crystallographica Section A . 72 (3): 406– 411. Bibcode :2016AcCry..72..406K . doi :10.1107/S2053273316003430 . ISSN 2053-2733 . PMC 4850660 . PMID 27126118 .
^ Garay, Pablo G.; Martin, Osvaldo A.; Scheraga, Harold A.; Vila, Jorge A. (2016-07-21). "Detection of methylation, acetylation and glycosylation of protein residues by monitoring13C chemical-shift changes: A quantum-chemical study" . PeerJ . 4 : e2253. doi :10.7717/peerj.2253 . ISSN 2167-8359 . PMC 4963218 . PMID 27547559 .
^ Wang, Yan; Huang, Hong; Huang, Lida; Ristic, Branko (2017). "Evaluation of Bayesian source estimation methods with Prairie Grass observations and Gaussian plume model: A comparison of likelihood functions and distance measures". Atmospheric Environment . 152 : 519– 530. Bibcode :2017AtmEn.152..519W . doi :10.1016/j.atmosenv.2017.01.014 .
^ MacNeil, M. Aaron; Chong-Seng, Karen M.; Pratchett, Deborah J.; Thompson, Casssandra A.; Messmer, Vanessa; Pratchett, Morgan S. (2017-03-14). "Age and Growth of An Outbreaking Acanthaster cf. solaris Population within the Great Barrier Reef" (PDF) . Diversity . 9 (1): 18. doi :10.3390/d9010018 .
^ Tünnermann, Jan; Scharlau, Ingrid (2016). "Peripheral Visual Cues: Their Fate in Processing and Effects on Attention and Temporal-Order Perception" . Frontiers in Psychology . 7 : 1442. doi :10.3389/fpsyg.2016.01442 . ISSN 1664-1078 . PMC 5052275 . PMID 27766086 .
^ Graham, Nicholas A. J.; Jennings, Simon; MacNeil, M. Aaron; Mouillot, David; Wilson, Shaun K. (2015). "Predicting climate-driven regime shifts versus rebound potential in coral reefs". Nature . 518 (7537): 94– 97. Bibcode :2015Natur.518...94G . doi :10.1038/nature14140 . PMID 25607371 . S2CID 4453338 .
^ Mascarenhas, Maya N.; Flaxman, Seth R.; Boerma, Ties; Vanderpoel, Sheryl; Stevens, Gretchen A. (2012-12-18). "National, Regional, and Global Trends in Infertility Prevalence Since 1990: A Systematic Analysis of 277 Health Surveys" . PLOS Medicine . 9 (12): e1001356. doi :10.1371/journal.pmed.1001356 . ISSN 1549-1676 . PMC 3525527 . PMID 23271957 .
^ Cavanagh, James F; Wiecki, Thomas V; Cohen, Michael X; Figueroa, Christina M; Samanta, Johan; Sherman, Scott J; Frank, Michael J (2011). "Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold" . Nature Neuroscience . 14 (11): 1462– 1467. doi :10.1038/nn.2925 . PMC 3394226 . PMID 21946325 .
^ Gething, Peter W.; Elyazar, Iqbal R. F.; Moyes, Catherine L.; Smith, David L.; Battle, Katherine E.; Guerra, Carlos A.; Patil, Anand P.; Tatem, Andrew J.; Howes, Rosalind E. (2012-09-06). "A Long Neglected World Malaria Map: Plasmodium vivax Endemicity in 2010" . PLOS Neglected Tropical Diseases . 6 (9): e1814. Bibcode :2012PNTDi...6.1814G . doi :10.1371/journal.pntd.0001814 . ISSN 1935-2735 . PMC 3435256 . PMID 22970336 .
^ Pullan, Rachel L.; Smith, Jennifer L.; Jasrasaria, Rashmi; Brooker, Simon J. (2014-01-21). "Global numbers of infection and disease burden of soil transmitted helminth infections in 2010" . Parasites & Vectors . 7 : 37. Bibcode :2014PVec....7...37P . doi :10.1186/1756-3305-7-37 . ISSN 1756-3305 . PMC 3905661 . PMID 24447578 .
^ Lamblin, Pascal (28 September 2017). "MILA and the future of Theano" . theano-users (Mailing list). Retrieved 28 September 2017 .
^ Developers, PyMC (2018-05-17). "Theano, TensorFlow and the Future of PyMC" . PyMC Developers . Retrieved 2019-01-25 .
^ "The Future of PyMC3, or: Theano is Dead, Long Live Theano" . PyMC Developers . 27 October 2020. Retrieved 10 January 2021 .
^ Bradbury, James; Frostig, Roy; Hawkins, Peter; James, Matthew James; Leary, Chris; Maclaurin, Dougal; Necula, George; Paszke, Adam; VanderPlas, Jake; Wanderman-Milne, Skye; Zhang, Qiao. "JAX" . GitHub . Retrieved 10 January 2021 .
^ "PyMC Timeline" . PyMC Timeline . Retrieved 10 January 2021 .
^ Hoffman, Matthew D.; Gelman, Andrew (April 2014). "The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo" . Journal of Machine Learning Research . 15 : pp. 1593–1623.
^ Kucukelbir, Alp; Ranganath, Rajesh; Blei, David M. (June 2015). "Automatic Variational Inference in Stan". 1506 (3431). arXiv :1506.03431 . Bibcode :2015arXiv150603431K .
Further reading
Martin, Osvaldo (2024). Bayesian Analysis with Python : A Practical Guide to Probabilistic Modeling (Third ed.). Packt. ISBN 978-1-80512-716-1 .
External links
PyMC website
PyMC source , a Git repository hosted on GitHub
PyTensor is a Python library for defining, optimizing, and efficiently evaluating mathematical expressions involving multi-dimensional arrays.