For the case of , the product integral reduces exactly to the case of Lebesgue integration, that is, to classical calculus. Thus, the interesting cases arise for functions where is either some commutative algebra, such as a finite-dimensional matrix field, or if is a non-commutative algebra. The theories for these two cases, the commutative and non-commutative cases, have little in common. The non-commutative case is far more complicated; it requires proper path-ordering to make the integral well-defined.
The Volterra product integral is most useful when applied to matrix-valued functions or functions with values in a Banach algebra. When applied to scalars belonging to a non-commutative field, to matrixes, and to operators, i.e. to mathematical objects that don't commute, the Volterra integral splits in two definitions.[14]
The left product integral is
With this notation of left products (i.e. normal products applied from left)
The right product integral
With this notation of right products (i.e. applied from right)
Where is the identity matrix and D is a partition of the interval [a,b] in the Riemann sense, i.e. the limit is over the maximum interval in the partition. Note how in this case time ordering becomes evident in the definitions.
The product integral satisfies a collection of properties defining a one-parameter continuous group; these are stated in two articles showing applications: the Dyson series and the Peano–Baker series.
Commutative case
The commutative case is vastly simpler, and, as a result, a large variety of distinct notations and definitions have appeared. Three distinct styles are popular in the literature. This subsection adopts the product notation for product integration instead of the integral (usually modified by a superimposed times symbol or letter P) favoured by Volterra and others. An arbitrary classification of types is adopted to impose some order in the field.
When the function to be integrated is valued in the real numbers, then the theory reduces exactly to the theory of Lebesgue integration.
Type I: Volterra integral
The type I product integral corresponds to Volterra's original definition.[2][15][16] The following relationship exists for scalar functions:
Type II: Geometric integral
which is called the geometric integral. The logarithm is well-defined if f takes values in the real or complex numbers, or if f takes values in a commutative field of commuting trace-class operators. This definition of the product integral is the continuous analog of the discreteproductoperator (with ) and the multiplicative analog to the (normal/standard/additive) integral (with ):
The type III product integral is called the bigeometric integral.
Basic results
For the commutative case, the following results hold for the type II product integral (the geometric integral).
The geometric integral (type II above) plays a central role in the geometric calculus,[3][4][17] which is a multiplicative calculus. The inverse of the geometric integral, which is the geometric derivative, denoted , is defined using the following relationship:
When the integrand takes values in the real numbers, then the product intervals become easy to work with by using simple functions. Just as in the case of Lebesgue version of (classical) integrals, one can compute product integrals by approximating them with the product integrals of simple functions. The case of Type II geometric integrals reduces to exactly the case of classical Lebesgue integration.
Another approximation of the "Riemann definition" of the type I product integral is defined as
When is a constant function, the limit of the first type of approximation is equal to the second type of approximation.[19] Notice that in general, for a step function, the value of the second type of approximation doesn't depend on the partition, as long as the partition is a refinement of the partition defining the step function, whereas the value of the first type of approximation does depend on the fineness of the partition, even when it is a refinement of the partition defining the step function.
It turns out that[20] for any product-integrable function , the limit of the first type of approximation equals the limit of the second type of approximation. Since, for step functions, the value of the second type of approximation doesn't depend on the fineness of the partition for partitions "fine enough", it makes sense to define[21] the "Lebesgue (type I) product integral" of a step function as
where is the tagged partition corresponding to the step function . (In contrast, the corresponding quantity would not be unambiguously defined using the first type of approximation.)
This generalizes to arbitrary measure spaces readily. If is a measure space with measure, then for any product-integrable simple function (i.e. a conical combination of the indicator functions for some disjoint measurable sets ), its type I product integral is defined to be
since is the value of at any point of . In the special case where , is Lebesgue measure, and all of the measurable sets are intervals, one can verify that this is equal to the definition given above for that special case. Analogous to the theory of Lebesgue (classical) integrals, the Type I product integral of any product-integrable function can be written as the limit of an increasing sequence of Volterra product integrals of product-integrable simple functions.
Taking logarithms of both sides of the above definition, one gets that for any product-integrable simple function :
where we used the definition of integral for simple functions. Moreover, because continuous functions like can be interchanged with limits, and the product integral of any product-integrable function is equal to the limit of product integrals of simple functions, it follows that the relationship
holds generally for any product-integrable . This clearly generalizes the property mentioned above.
The Type I integral is multiplicative as a set function,[22] which can be shown using the above property. More specifically, given a product-integrable function one can define a set function by defining, for every measurable set ,
where denotes the indicator function of . Then for any two disjoint measurable sets one has
However, the Type I integral is notmultiplicative as a functional. Given two product-integrable functions , and a measurable set , it is generally the case that
Type II: Geometric integral
If is a measure space with measure , then for any product-integrable simple function (i.e. a conical combination of the indicator functions for some disjoint measurable sets ), its type II product integral is defined to be
This can be seen to generalize the definition given above.
Taking logarithms of both sides, we see that for any product-integrable simple function :
where the definition of the Lebesgue integral for simple functions was used. This observation, analogous to the one already made for Type II integrals above, allows one to entirely reduce the "Lebesgue theory of type II geometric integrals" to the Lebesgue theory of (classical) integrals. In other words, because continuous functions like and can be interchanged with limits, and the product integral of any product-integrable function is equal to the limit of some increasing sequence of product integrals of simple functions, it follows that the relationship
holds generally for any product-integrable . This generalizes the property of geometric integrals mentioned above.