In the algebraic mathematics, the Principal equation form (also called Principal polynomial form ) is a special form of a polynomial equation. This form is of at least third degree and it contains neither the term of the second highest degree nor the term of the third highest degree. In the computation of polynomial equations this form is used to simplify the given equations and to find out corresponding discriminants that characterize the equations.
Definition
The Principal form is a polynomial form of at least third degree in which the coefficients of the second highest and third highest degree[ 1] [ 2] are equal to zero. obeys this fundamental pattern:
∑
m
=
0
n
c
m
x
m
=
0
[
(
n
≥
3
)
∩
(
c
n
−
1
=
0
)
∩
(
c
n
−
2
=
0
)
]
{\displaystyle \sum _{m=0}^{n}c_{m}x^{m}=0\,\,[(n\geq 3)\,\cap (c_{n-1}=0)\,\cap (c_{n-2}=0)]}
If a regular form of a polynomial equation is given, a corresponding principal form can be generated using Tschirnhaus transformations on the given equation, so that the degree of the Tschirnhaus key is smaller[ 3] than the degree of the given equation. Especially the Tschirnhaus transformation with the holistic rational quadratic key and the transformation of a broken rational linear key can be used in order to create the principal form[ 4] directly. In the following, the cubic, the quartic and the quintic polynomial equations of the principal form shall be analyzed accurately.
Cubic case
This is the given cubic equation:
x
3
−
a
x
2
+
b
x
−
c
=
0
{\displaystyle x^{3}-ax^{2}+bx-c=0}
Following quadratic equation system shall be solved:
F
i
r
s
t
c
l
u
e
{\displaystyle \mathrm {First\,clue} }
a
u
+
3
v
+
a
2
−
2
b
=
0
{\displaystyle au+3v+a^{2}-2b=0}
S
e
c
o
n
d
c
l
u
e
{\displaystyle \mathrm {Second\,clue} }
b
u
2
−
3
v
2
+
a
b
u
−
3
c
u
−
2
a
c
+
b
2
=
0
{\displaystyle bu^{2}-3v^{2}+abu-3cu-2ac+b^{2}=0}
T
h
i
r
d
c
l
u
e
{\displaystyle \mathrm {Third\,clue} }
w
=
c
u
3
+
a
c
u
2
+
b
c
u
+
v
3
+
c
2
{\displaystyle w=cu^{3}+acu^{2}+bcu+v^{3}+c^{2}}
And so exactly this Tschirnhaus transformation appears:
(
x
2
+
u
x
+
v
)
3
−
w
=
0
{\displaystyle (x^{2}+ux+v)^{3}-w=0}
Cubic calculation examples
Plastic constant:
x
3
−
x
−
1
=
0
{\displaystyle x^{3}-x-1=0}
[
x
2
+
(
1
6
69
−
3
2
)
x
−
2
3
]
3
−
23
54
(
3
69
−
23
)
=
0
{\displaystyle {\bigl [}x^{2}+({\tfrac {1}{6}}{\sqrt {69}}-{\tfrac {3}{2}})x-{\tfrac {2}{3}}{\bigr ]}^{3}-{\tfrac {23}{54}}(3{\sqrt {69}}-23)=0}
Supergolden constant:
x
3
−
x
2
−
1
=
0
{\displaystyle x^{3}-x^{2}-1=0}
[
x
2
+
(
1
2
93
−
11
2
)
x
−
1
6
93
+
3
2
]
3
−
31
18
(
29
93
−
279
)
=
0
{\displaystyle {\bigl [}x^{2}+({\tfrac {1}{2}}{\sqrt {93}}-{\tfrac {11}{2}})x-{\tfrac {1}{6}}{\sqrt {93}}+{\tfrac {3}{2}}{\bigr ]}^{3}-{\tfrac {31}{18}}(29{\sqrt {93}}-279)=0}
Tribonacci constant:
x
3
−
x
2
−
x
−
1
=
0
{\displaystyle x^{3}-x^{2}-x-1=0}
[
x
2
+
(
1
4
33
−
9
4
)
x
−
1
12
33
−
1
4
]
3
−
11
72
(
19
33
−
99
)
=
0
{\displaystyle {\bigl [}x^{2}+({\tfrac {1}{4}}{\sqrt {33}}-{\tfrac {9}{4}})x-{\tfrac {1}{12}}{\sqrt {33}}-{\tfrac {1}{4}}{\bigr ]}^{3}-{\tfrac {11}{72}}(19{\sqrt {33}}-99)=0}
Quartic case
This is the given quartic equation:
x
4
−
a
x
3
+
b
x
2
−
c
x
+
d
=
0
{\displaystyle x^{4}-ax^{3}+bx^{2}-cx+d=0}
Now this quadratic equation system shall be solved:
F
i
r
s
t
c
l
u
e
{\displaystyle \mathrm {First\,clue} }
a
t
+
4
u
+
a
2
−
2
b
=
0
{\displaystyle at+4u+a^{2}-2b=0}
S
e
c
o
n
d
c
l
u
e
{\displaystyle \mathrm {Second\,clue} }
b
t
2
−
6
u
2
+
a
b
t
−
3
c
t
−
2
a
c
+
b
2
+
2
d
=
0
{\displaystyle bt^{2}-6u^{2}+abt-3ct-2ac+b^{2}+2d=0}
T
h
i
r
d
c
l
u
e
{\displaystyle \mathrm {Third\,clue} }
v
=
c
t
3
+
a
c
t
2
−
4
d
t
2
−
3
a
d
t
+
b
c
t
+
4
u
3
−
2
b
d
+
c
2
{\displaystyle v=ct^{3}+act^{2}-4dt^{2}-3adt+bct+4u^{3}-2bd+c^{2}}
F
o
u
r
t
h
c
l
u
e
{\displaystyle \mathrm {Fourth\,clue} }
w
=
d
t
4
−
u
4
+
u
v
+
a
d
t
3
+
b
d
t
2
+
c
d
t
+
d
2
{\displaystyle w=dt^{4}-u^{4}+uv+adt^{3}+bdt^{2}+cdt+d^{2}}
And so accurately that Tschirnhaus transformation appears:
(
x
2
+
t
x
+
u
)
4
−
v
(
x
2
+
t
x
+
u
)
+
w
=
0
{\displaystyle (x^{2}+tx+u)^{4}-v(x^{2}+tx+u)+w=0}
Quartic calculation examples
The Tschirnhaus transformation of the equation for the Tetranacci constant contains only rational coefficients:
x
4
−
x
3
−
x
2
−
x
−
1
=
0
{\displaystyle x^{4}-x^{3}-x^{2}-x-1=0}
y
=
x
2
−
3
x
{\displaystyle y=x^{2}-3x}
y
4
−
11
y
−
41
=
0
{\displaystyle y^{4}-11y-41=0}
In this way following expression can be made about the Tetranacci constant:
x
2
−
3
x
=
(
41
3
)
1
/
4
sinh
[
1
3
arsinh
(
363
26896
123
)
]
−
{\displaystyle x^{2}-3x=({\tfrac {41}{3}})^{1/4}{\sqrt {\sinh {\bigl [}{\tfrac {1}{3}}\operatorname {arsinh} ({\tfrac {363}{26896}}{\sqrt {123}}){\bigr ]}}}-}
−
(
41
3
)
1
/
4
{
11
4
(
3
41
)
3
/
4
csch
[
1
3
arsinh
(
363
26896
123
)
]
−
sinh
[
1
3
arsinh
(
363
26896
123
)
]
}
1
/
2
{\displaystyle -({\tfrac {41}{3}})^{1/4}{\bigl \{}{\tfrac {11}{4}}({\tfrac {3}{41}})^{3/4}{\sqrt {\operatorname {csch} {\bigl [}{\tfrac {1}{3}}\operatorname {arsinh} ({\tfrac {363}{26896}}{\sqrt {123}}){\bigr ]}}}-\sinh {\bigl [}{\tfrac {1}{3}}\operatorname {arsinh} ({\tfrac {363}{26896}}{\sqrt {123}}){\bigr ]}{\bigr \}}^{1/2}}
That calculation example however does contain the element of the square root in the Tschirnhaus transformation:
x
4
+
x
3
+
x
2
−
x
−
1
=
0
{\displaystyle x^{4}+x^{3}+x^{2}-x-1=0}
y
=
x
2
+
1
5
(
19
+
4
21
)
x
+
1
5
(
6
+
21
)
{\displaystyle y=x^{2}+{\tfrac {1}{5}}(19+4{\sqrt {21}})x+{\tfrac {1}{5}}(6+{\sqrt {21}})}
y
4
−
1
125
(
38267
+
8272
21
)
y
−
1
625
(
101277
21
+
463072
)
=
0
{\displaystyle y^{4}-{\tfrac {1}{125}}(38267+8272{\sqrt {21}})y-{\tfrac {1}{625}}(101277{\sqrt {21}}+463072)=0}
In the following we solve a special equation pattern that is easily solvable by using elliptic functions:
x
4
−
6
x
2
−
8
S
2
+
1
x
−
3
=
0
{\displaystyle x^{4}-6x^{2}-8{\sqrt {S^{2}+1}}\,x-3=0}
Q
=
q
{
tanh
[
1
2
arsinh
(
S
)
]
}
=
q
[
S
÷
(
S
2
+
1
+
1
)
]
{\displaystyle Q=q{\bigl \{}\tanh {\bigl [}{\tfrac {1}{2}}\operatorname {arsinh} (S){\bigr ]}{\bigr \}}=q{\bigl [}S\div ({\sqrt {S^{2}+1}}+1){\bigr ]}}
x
=
3
ϑ
01
(
Q
3
)
2
ϑ
01
(
Q
)
2
{\displaystyle x={\frac {3\,\vartheta _{01}(Q^{3})^{2}}{\vartheta _{01}(Q)^{2}}}}
These are important additional informations about the elliptic nome and the mentioned Jacobi theta function:
q
(
ε
)
=
exp
[
−
π
K
(
1
−
ε
2
)
÷
K
(
ε
)
]
{\displaystyle q(\varepsilon )=\exp {\bigl [}-\pi K({\sqrt {1-\varepsilon ^{2}}})\div K(\varepsilon ){\bigr ]}}
ϑ
01
(
r
)
=
∑
k
=
−
∞
∞
(
−
1
)
k
r
k
2
=
∏
n
=
1
∞
(
1
−
r
2
n
)
(
1
−
r
2
n
−
1
)
2
{\displaystyle \vartheta _{01}(r)=\sum _{k=-\infty }^{\infty }(-1)^{k}r^{k^{2}}=\prod _{n=1}^{\infty }(1-r^{2n})(1-r^{2n-1})^{2}}
Computation rule for the mentioned theta quotient:
3
ϑ
01
{
q
[
κ
3
÷
(
κ
6
+
1
+
1
)
]
3
}
2
ϑ
01
{
q
[
κ
3
÷
(
κ
6
+
1
+
1
)
]
}
2
=
2
κ
4
−
κ
2
+
1
−
κ
2
+
2
+
κ
2
+
1
{\displaystyle {\frac {3\,\vartheta _{01}\{q[\kappa ^{3}\div ({\sqrt {\kappa ^{6}+1}}+1)]^{3}\}^{2}}{\vartheta _{01}\{q[\kappa ^{3}\div ({\sqrt {\kappa ^{6}+1}}+1)]\}^{2}}}={\sqrt {2{\sqrt {\kappa ^{4}-\kappa ^{2}+1}}-\kappa ^{2}+2}}+{\sqrt {\kappa ^{2}+1}}}
Accurately the Jacobi theta function is used for solving that equation.
Now we create a Tschirnhaus transformation on that:
x
4
−
6
x
2
−
8
S
2
+
1
x
−
3
=
0
{\displaystyle x^{4}-6x^{2}-8{\sqrt {S^{2}+1}}\,x-3=0}
y
=
x
2
−
2
(
S
2
+
1
−
S
)
x
−
3
{\displaystyle y=x^{2}-2({\sqrt {S^{2}+1}}-S)x-3}
y
4
+
64
S
2
(
4
S
2
+
1
−
4
S
S
2
+
1
)
y
−
384
S
3
(
S
2
+
1
−
S
)
=
0
{\displaystyle y^{4}+64\,S^{2}(4S^{2}+1-4S{\sqrt {S^{2}+1}})y-384\,S^{3}({\sqrt {S^{2}+1}}-S)=0}
Elliptic solving of principal quartics
Now this solving pattern shall be used for solving some principal quartic equations:
First calculation example:
x
4
+
x
−
1
=
0
{\displaystyle x^{4}+x-1=0}
Q
=
q
{
tanh
[
1
2
artanh
(
31
100
+
1
300
849
−
1
300
386
849
−
1902
)
]
}
{\displaystyle Q=q{\bigl \{}\tanh {\bigl [}{\tfrac {1}{2}}\operatorname {artanh} ({\tfrac {31}{100}}+{\tfrac {1}{300}}{\sqrt {849}}-{\tfrac {1}{300}}{\sqrt {386{\sqrt {849}}-1902}}){\bigr ]}{\bigr \}}}
x
=
4
2
849
+
18
−
6
[
9
ϑ
01
(
Q
3
)
4
ϑ
01
(
Q
)
4
−
1
4
32
+
2
6
849
−
54
3
ϑ
01
(
Q
3
)
2
ϑ
01
(
Q
)
2
−
3
]
{\displaystyle x={\frac {4}{{\sqrt {2{\sqrt {849}}+18}}-6}}{\biggl [}{\frac {9\,\vartheta _{01}(Q^{3})^{4}}{\vartheta _{01}(Q)^{4}}}-{\frac {1}{4}}{\sqrt {32+2{\sqrt {6{\sqrt {849}}-54}}}}\,{\frac {3\,\vartheta _{01}(Q^{3})^{2}}{\vartheta _{01}(Q)^{2}}}-3{\biggr ]}}
Second calculation example:
x
4
+
2
x
−
1
=
0
{\displaystyle x^{4}+2x-1=0}
Q
=
q
{
tanh
[
1
2
artanh
(
1
10
+
1
30
129
−
1
30
26
129
−
102
)
]
}
{\displaystyle Q=q{\bigl \{}\tanh {\bigl [}{\tfrac {1}{2}}\operatorname {artanh} ({\tfrac {1}{10}}+{\tfrac {1}{30}}{\sqrt {129}}-{\tfrac {1}{30}}{\sqrt {26{\sqrt {129}}-102}}){\bigr ]}{\bigr \}}}
x
=
2
2
129
+
18
−
6
[
9
ϑ
01
(
Q
3
)
4
ϑ
01
(
Q
)
4
−
1
2
8
+
2
6
129
−
54
3
ϑ
01
(
Q
3
)
2
ϑ
01
(
Q
)
2
−
3
]
{\displaystyle x={\frac {2}{{\sqrt {2{\sqrt {129}}+18}}-6}}{\biggl [}{\frac {9\,\vartheta _{01}(Q^{3})^{4}}{\vartheta _{01}(Q)^{4}}}-{\frac {1}{2}}{\sqrt {8+2{\sqrt {6{\sqrt {129}}-54}}}}\,{\frac {3\,\vartheta _{01}(Q^{3})^{2}}{\vartheta _{01}(Q)^{2}}}-3{\biggr ]}}
Third calculation example:
x
4
+
5
x
−
3
=
0
{\displaystyle x^{4}+5x-3=0}
Q
=
q
{
tanh
[
1
2
artanh
(
239
5092
+
75
5092
881
−
5
5092
11618
881
−
112750
)
]
}
{\displaystyle Q=q{\bigl \{}\tanh {\bigl [}{\tfrac {1}{2}}\operatorname {artanh} ({\tfrac {239}{5092}}+{\tfrac {75}{5092}}{\sqrt {881}}-{\tfrac {5}{5092}}{\sqrt {11618{\sqrt {881}}-112750}}){\bigr ]}{\bigr \}}}
x
=
4
2
881
+
50
−
10
[
9
ϑ
01
(
Q
3
)
4
ϑ
01
(
Q
)
4
−
1
4
32
+
10
2
881
−
50
3
ϑ
01
(
Q
3
)
2
ϑ
01
(
Q
)
2
−
3
]
{\displaystyle x={\frac {4}{{\sqrt {2{\sqrt {881}}+50}}-10}}{\biggl [}{\frac {9\,\vartheta _{01}(Q^{3})^{4}}{\vartheta _{01}(Q)^{4}}}-{\frac {1}{4}}{\sqrt {32+10{\sqrt {2{\sqrt {881}}-50}}}}\,{\frac {3\,\vartheta _{01}(Q^{3})^{2}}{\vartheta _{01}(Q)^{2}}}-3{\biggr ]}}
Clue for the computation of the S value for a given principal quartic:
x
4
+
ψ
x
−
ω
=
0
{\displaystyle x^{4}+\psi x-\omega =0}
If this equation pattern is given, the modulus tangent duplication value S can be determined in this way:
ψ
4
[
384
S
3
(
S
2
+
1
−
S
)
]
3
=
ω
3
[
64
S
2
(
4
S
2
+
1
−
4
S
S
2
+
1
)
]
4
{\displaystyle \psi ^{4}{\bigl [}384\,S^{3}({\sqrt {S^{2}+1}}-S){\bigr ]}^{3}=\omega ^{3}{\bigl [}64\,S^{2}(4S^{2}+1-4S{\sqrt {S^{2}+1}}){\bigr ]}^{4}}
The solution of the now mentioned formula always is in pure biquadratic radical relation to psi and omega and therefore it is a useful tool to solve principal quartic equations.
Q
=
exp
⟨
−
π
K
{
sech
[
1
2
arsinh
(
S
)
]
}
÷
K
{
tanh
[
1
2
arsinh
(
S
)
]
}
⟩
{\displaystyle Q=\exp {\bigl \langle }-\pi K{\bigl \{}\operatorname {sech} {\bigl [}{\tfrac {1}{2}}\operatorname {arsinh} (S){\bigr ]}{\bigr \}}\div K{\bigl \{}\tanh {\bigl [}{\tfrac {1}{2}}\operatorname {arsinh} (S){\bigr ]}{\bigr \}}{\bigr \rangle }}
And this can be solved in that way:
x
=
ω
[
64
S
2
(
4
S
2
+
1
−
4
S
S
2
+
1
)
]
ψ
[
384
S
3
(
S
2
+
1
−
S
)
]
[
9
ϑ
01
(
Q
3
)
4
ϑ
01
(
Q
)
4
−
2
(
S
2
+
1
−
S
)
3
ϑ
01
(
Q
3
)
2
ϑ
01
(
Q
)
2
−
3
]
{\displaystyle x={\frac {\omega [64\,S^{2}(4S^{2}+1-4S{\sqrt {S^{2}+1}})]}{\psi [384\,S^{3}({\sqrt {S^{2}+1}}-S)]}}{\biggl [}{\frac {9\,\vartheta _{01}(Q^{3})^{4}}{\vartheta _{01}(Q)^{4}}}-2({\sqrt {S^{2}+1}}-S){\frac {3\,\vartheta _{01}(Q^{3})^{2}}{\vartheta _{01}(Q)^{2}}}-3{\biggr ]}}
Quintic case
Synthesis advice for the quadratic Tschirnhaus key
This is the given quintic equation:
x
5
−
a
x
4
+
b
x
3
−
c
x
2
+
d
x
−
e
=
0
{\displaystyle x^{5}-ax^{4}+bx^{3}-cx^{2}+dx-e=0}
That quadratic equation system leads to the coefficients of the quadratic Tschirnhaus key:
F
i
r
s
t
c
l
u
e
{\displaystyle \mathrm {First\,clue} }
a
s
+
5
t
+
a
2
−
2
b
=
0
{\displaystyle as+5t+a^{2}-2b=0}
S
e
c
o
n
d
c
l
u
e
{\displaystyle \mathrm {Second\,clue} }
b
s
2
−
10
t
2
+
a
b
s
−
3
c
s
−
2
a
c
+
b
2
+
2
d
=
0
{\displaystyle bs^{2}-10t^{2}+abs-3cs-2ac+b^{2}+2d=0}
By polynomial division that Tschirnhaus transformation can be made:
(
x
2
+
s
x
+
t
)
5
−
u
(
x
2
+
s
x
+
t
)
2
+
v
(
x
2
+
s
x
+
t
)
−
w
=
0
{\displaystyle (x^{2}+sx+t)^{5}-u(x^{2}+sx+t)^{2}+v(x^{2}+sx+t)-w=0}
Calculation examples
This is the first example:
x
5
−
x
4
−
x
2
−
1
=
0
{\displaystyle x^{5}-x^{4}-x^{2}-1=0}
y
=
x
2
−
1
4
(
19
−
265
)
x
−
1
20
(
265
−
15
)
{\displaystyle y=x^{2}-{\tfrac {1}{4}}(19-{\sqrt {265}})x-{\tfrac {1}{20}}({\sqrt {265}}-15)}
y
5
+
1
80
(
24455
−
1501
265
)
y
2
−
1
160
(
5789
265
−
93879
)
y
−
1
4000
(
5393003
265
−
87785025
)
=
0
{\displaystyle y^{5}+{\tfrac {1}{80}}(24455-1501{\sqrt {265}})y^{2}-{\tfrac {1}{160}}(5789{\sqrt {265}}-93879)y-{\tfrac {1}{4000}}(5393003{\sqrt {265}}-87785025)=0}
And this is the second example:
x
5
+
x
4
+
x
3
+
x
2
−
1
=
0
{\displaystyle x^{5}+x^{4}+x^{3}+x^{2}-1=0}
y
=
x
2
+
1
3
(
30
−
3
)
x
+
1
15
30
{\displaystyle y=x^{2}+{\tfrac {1}{3}}({\sqrt {30}}-3)x+{\tfrac {1}{15}}{\sqrt {30}}}
y
5
−
1
45
(
465
−
61
30
)
y
2
+
2
45
(
1616
−
289
30
)
y
−
1
1125
(
33758
30
−
183825
)
=
0
{\displaystyle y^{5}-{\tfrac {1}{45}}(465-61{\sqrt {30}})y^{2}+{\tfrac {2}{45}}(1616-289{\sqrt {30}})y-{\tfrac {1}{1125}}(33758{\sqrt {30}}-183825)=0}
The mathematicians Victor Adamchik and David Jeffrey found out how to solve every principal quintic equation. In their essay[ 5] Polynomial Transformations of Tschirnhaus, Bring and Jerrard they wrote this way down. These two mathematicians solved this principal form by transforming it into the Bring Jerrard[ 6] form. Their method contains the construction of a quartic Tschirnhaus transformation key. For the construction of that key they executed a disjunction of the linear term coefficient of the key in order to get a system that solves all other terms in a quadratic radical way and to only solve a further cubic equation[ 7] to get the coefficient of the linear term of the Tschirnhaus key.
In their essay they constructed the quartic Tschirnhaus key in this way:
y
5
−
u
y
2
+
v
y
−
w
=
0
{\displaystyle y^{5}-uy^{2}+vy-w=0}
In order to do the transformation Adamchik and Jeffrey constructed equation system that generates the coefficients of the cubic, quadratic and absolute term of the Tschirnhaus key:
4
v
α
−
3
u
β
=
5
w
{\displaystyle 4v{\color {crimson}\alpha }-3u{\color {green}\beta }=5w}
3
u
α
+
5
δ
=
4
v
{\displaystyle 3u{\color {crimson}\alpha }+5{\color {blue}\delta }=4v}
15
w
α
β
−
3
u
α
δ
−
6
v
β
2
−
v
δ
=
3
u
w
−
2
v
2
{\displaystyle 15w{\color {crimson}\alpha }{\color {green}\beta }-3u{\color {crimson}\alpha }{\color {blue}\delta }-6v{\color {green}\beta }^{2}-v{\color {blue}\delta }=3uw-2v^{2}}
And for receiving the coefficient of the linear term this cubic equation shall be solved successively:
u
γ
3
+
(
5
w
α
−
4
v
β
+
3
u
2
)
γ
2
+
(
u
v
α
2
−
8
v
α
δ
+
5
w
β
2
+
6
u
β
δ
−
8
u
v
β
+
3
u
3
+
9
v
w
)
γ
+
{\displaystyle u{\color {orange}\gamma }^{3}+(5w{\color {crimson}\alpha }-4v{\color {green}\beta }+3u^{2}){\color {orange}\gamma }^{2}+(uv{\color {crimson}\alpha }^{2}-8v{\color {crimson}\alpha }{\color {blue}\delta }+5w{\color {green}\beta }^{2}+6u{\color {green}\beta }{\color {blue}\delta }-8uv{\color {green}\beta }+3u^{3}+9vw){\color {orange}\gamma }+}
+
u
3
α
3
+
v
w
α
3
+
u
2
β
3
−
10
u
w
α
2
β
+
4
v
2
α
2
β
+
9
u
2
α
2
δ
−
u
v
α
β
2
+
15
u
α
δ
2
+
10
δ
3
−
{\displaystyle +u^{3}{\color {crimson}\alpha }^{3}+vw{\color {crimson}\alpha }^{3}+u^{2}{\color {green}\beta }^{3}-10uw{\color {crimson}\alpha }^{2}{\color {green}\beta }+4v^{2}{\color {crimson}\alpha }^{2}{\color {green}\beta }+9u^{2}{\color {crimson}\alpha }^{2}{\color {blue}\delta }-uv{\color {crimson}\alpha }{\color {green}\beta }^{2}+15u{\color {crimson}\alpha }{\color {blue}\delta }^{2}+10{\color {blue}\delta }^{3}-}
−
u
2
v
α
2
−
3
u
3
α
β
+
6
v
w
α
β
−
12
u
v
α
δ
+
5
u
w
β
2
−
4
v
2
β
2
+
u
v
2
α
−
u
2
w
α
+
2
u
2
v
β
+
u
4
−
4
v
3
+
8
u
v
w
=
0
{\displaystyle -u^{2}v{\color {crimson}\alpha }^{2}-3u^{3}{\color {crimson}\alpha }{\color {green}\beta }+6vw{\color {crimson}\alpha }{\color {green}\beta }-12uv{\color {crimson}\alpha }{\color {blue}\delta }+5uw{\color {green}\beta }^{2}-4v^{2}{\color {green}\beta }^{2}+uv^{2}{\color {crimson}\alpha }-u^{2}w{\color {crimson}\alpha }+2u^{2}v{\color {green}\beta }+u^{4}-4v^{3}+8uvw=0}
The solution of that system then has to be entered in that mold here:
z
=
y
4
+
α
y
3
+
β
y
2
+
γ
y
+
δ
{\displaystyle z=y^{4}+{\color {crimson}\alpha }y^{3}+{\color {green}\beta }y^{2}+{\color {orange}\gamma }y+{\color {blue}\delta }}
z
5
+
λ
z
−
μ
=
0
{\displaystyle z^{5}+\lambda z-\mu =0}
The coefficients Lambda and My can be found out by doing a polynomial division of z^5 divided by the initial principal polynome and reading the resulting remainder rest. So a Bring Jerrard equation appears that contains only the quintic, the linear and the absolute term. That equation can be solved by an elliptic Jacobi theta quotient that contains the fifth powers and the fifth roots of the corresponding elliptic nome in the theta function terms.
Along with the Abel Ruffini theorem the following equation is an example that can not be solved in an elementary way, but can be reduced[ 8] to the Bring Jerrard form by only using cubic radical elements. This shall be demonstrated here:
y
5
−
5
y
2
+
5
y
−
5
=
0
{\displaystyle y^{5}-5y^{2}+5y-5=0}
For this given equation the quartic Tschirnhaus key now shall be synthesized. For that example the values u = v = w = 5 are the combination. Therefore this is the mentioned equation system for that example:
20
α
−
15
β
=
25
{\displaystyle 20\alpha -15\beta =25}
15
α
+
5
δ
=
20
{\displaystyle 15\alpha +5\delta =20}
75
α
β
−
15
α
δ
−
30
β
2
−
5
δ
=
25
{\displaystyle 75\alpha \beta -15\alpha \delta -30\beta ^{2}-5\delta =25}
So these are the coefficients of the cubic, quadratic and absolute term of the Tschirnhaus transformation key:
α
=
−
1
,
β
=
−
3
,
δ
=
7
{\displaystyle {\color {crimson}\alpha }=-1,\,{\color {green}\beta }=-3,\,{\color {blue}\delta }=7}
That cubic equation leads to the coefficient of the linear term of the key:
5
γ
3
+
110
γ
2
+
1100
γ
+
3080
=
0
{\displaystyle 5{\color {orange}\gamma }^{3}+110{\color {orange}\gamma }^{2}+1100{\color {orange}\gamma }+3080=0}
γ
=
8
3
11
sinh
[
1
3
arsinh
(
4
11
11
)
]
−
22
3
{\displaystyle {\color {orange}\gamma }={\frac {8}{3}}{\sqrt {11}}\sinh {\bigl [}{\frac {1}{3}}\operatorname {arsinh} {\bigl (}{\frac {4}{11}}{\sqrt {11}}{\bigr )}{\bigr ]}-{\frac {22}{3}}}
By doing a polynomial division on the fifth power of the quartic Tschirnhaus transformation key and analyzing the remainder rest the coefficients of the mold can be determined. This is the result:
y
5
−
5
y
2
+
5
y
−
5
=
0
{\displaystyle y^{5}-5y^{2}+5y-5=0}
z
=
y
4
−
y
3
−
3
y
2
+
{
8
3
11
sinh
[
1
3
arsinh
(
4
11
11
)
]
−
22
3
}
y
+
7
{\displaystyle z=y^{4}-y^{3}-3y^{2}+{\bigl \{}{\frac {8}{3}}{\sqrt {11}}\sinh {\bigl [}{\frac {1}{3}}\operatorname {arsinh} {\bigl (}{\frac {4}{11}}{\sqrt {11}}{\bigr )}{\bigr ]}-{\frac {22}{3}}{\bigr \}}y+7}
z
5
+
14080
3
{
11
−
2
22
cosh
[
1
3
arcosh
(
7
22
22
)
]
}
z
+
11264
3
{
11
−
110
2
sinh
[
1
3
arsinh
(
1
22
2
)
]
}
=
0
{\displaystyle z^{5}+{\frac {14080}{3}}{\bigl \{}11-2{\sqrt {22}}\cosh {\bigl [}{\frac {1}{3}}\operatorname {arcosh} {\bigl (}{\frac {7}{22}}{\sqrt {22}}{\bigr )}{\bigr ]}{\bigr \}}z+{\frac {11264}{3}}{\bigl \{}11-110{\sqrt {2}}\sinh {\bigl [}{\frac {1}{3}}\operatorname {arsinh} {\bigl (}{\frac {1}{22}}{\sqrt {2}}{\bigr )}{\bigr ]}{\bigr \}}=0}
These are the approximations of the solution:
z
≈
−
4.87187987090341241739191116705958390845844658170795795268900739402026742
{\displaystyle z\approx -4.87187987090341241739191116705958390845844658170795795268900739402026742}
y
≈
1.56670895425072582758152133323240667646412076995364965189840377191745
{\displaystyle y\approx 1.56670895425072582758152133323240667646412076995364965189840377191745}
Literature
"Polynomial Transformations of Tschirnhaus", Bring and Jerrard, ACM Sigsam Bulletin, Vol 37, No. 3, September 2003
F. Brioschi, Sulla risoluzione delle equazioni del quinto grado: Hermite — Sur la résolution de l'Équation du cinquiéme degré Comptes rendus —. N. 11. Mars. 1858. 1. Dezember 1858, doi:10.1007/bf03197334
Bruce and King, Beyond the Quartic Equation , Birkhäuser, 1996.
References
^ Weisstein, Eric W. "Principal Quintic Form" . mathworld.wolfram.com .
^ "The solution to the principal quintic via the Brioschi and Rogers-Ramanujan cfrac $R(q)$" . Mathematics Stack Exchange .
^
Jerrard, George Birch (1859). An essay on the resolution of equations . London, UK: Taylor & Francis .
^
Adamchik, Victor (2003). "Polynomial Transformations of Tschirnhaus, Bring, and Jerrard" (PDF) . ACM SIGSAM Bulletin . 37 (3): 91. CiteSeerX 10.1.1.10.9463 . doi :10.1145/990353.990371 . S2CID 53229404 . Archived from the original (PDF) on 2009-02-26.
^ Victor S. Adamchik and David J. Jeffrey. "Polynomial Transformations of Tschirnhaus, Bring and Jerrard" (PDF) . ACM SIGSAM Bulletin, Vol 37, No. 3, September 2003. Retrieved 28 December 2024 .
^ "A new way to solve the Bring quintic?" . Mathematics Stack Exchange .
^ Titus Piezas III. " "A New Way To Derive The Bring-Jerrard Quintic In Radicals" " . oocities.org. Retrieved 28 December 2024 .
^ Klein, Felix (December 28, 1888). "Lectures on the ikosahedron and the solution of equations of the fifth degree" . London : Trübner & Co. – via Internet Archive.