Integer sequence
In mathematics , poly-Bernoulli numbers , denoted as
B
n
(
k
)
{\displaystyle B_{n}^{(k)}}
, were defined by M. Kaneko as
L
i
k
(
1
−
e
−
x
)
1
−
e
−
x
=
∑
n
=
0
∞
B
n
(
k
)
x
n
n
!
{\displaystyle {Li_{k}(1-e^{-x}) \over 1-e^{-x}}=\sum _{n=0}^{\infty }B_{n}^{(k)}{x^{n} \over n!}}
where Li is the polylogarithm . The
B
n
(
1
)
{\displaystyle B_{n}^{(1)}}
are the usual Bernoulli numbers .
Moreover, the Generalization of Poly-Bernoulli numbers with a,b,c parameters defined as follows
L
i
k
(
1
−
(
a
b
)
−
x
)
b
x
−
a
−
x
c
x
t
=
∑
n
=
0
∞
B
n
(
k
)
(
t
;
a
,
b
,
c
)
x
n
n
!
{\displaystyle {Li_{k}(1-(ab)^{-x}) \over b^{x}-a^{-x}}c^{xt}=\sum _{n=0}^{\infty }B_{n}^{(k)}(t;a,b,c){x^{n} \over n!}}
where Li is the polylogarithm .
Kaneko also gave two combinatorial formulas:
B
n
(
−
k
)
=
∑
m
=
0
n
(
−
1
)
m
+
n
m
!
S
(
n
,
m
)
(
m
+
1
)
k
,
{\displaystyle B_{n}^{(-k)}=\sum _{m=0}^{n}(-1)^{m+n}m!S(n,m)(m+1)^{k},}
B
n
(
−
k
)
=
∑
j
=
0
min
(
n
,
k
)
(
j
!
)
2
S
(
n
+
1
,
j
+
1
)
S
(
k
+
1
,
j
+
1
)
,
{\displaystyle B_{n}^{(-k)}=\sum _{j=0}^{\min(n,k)}(j!)^{2}S(n+1,j+1)S(k+1,j+1),}
where
S
(
n
,
k
)
{\displaystyle S(n,k)}
is the number of ways to partition a size
n
{\displaystyle n}
set into
k
{\displaystyle k}
non-empty subsets (the Stirling number of the second kind ).
A combinatorial interpretation is that the poly-Bernoulli numbers of negative index enumerate the set of
n
{\displaystyle n}
by
k
{\displaystyle k}
(0,1)-matrices uniquely reconstructible from their row and column sums. Also it is the number of open tours by a biased rook on a board
1
⋯
1
⏟
n
0
⋯
0
⏟
k
{\displaystyle \underbrace {1\cdots 1} _{n}\underbrace {0\cdots 0} _{k}}
(see A329718 for definition).
The Poly-Bernoulli number
B
k
(
−
k
)
{\displaystyle B_{k}^{(-k)}}
satisfies the following asymptotic:[ 1]
B
k
(
−
k
)
∼
(
k
!
)
2
1
k
π
(
1
−
log
2
)
(
1
log
2
)
2
k
+
1
,
as
k
→
∞
.
{\displaystyle B_{k}^{(-k)}\sim (k!)^{2}{\sqrt {\frac {1}{k\pi (1-\log 2)}}}\left({\frac {1}{\log 2}}\right)^{2k+1},\quad {\text{as }}k\rightarrow \infty .}
For a positive integer n and a prime number p , the poly-Bernoulli numbers satisfy
B
n
(
−
p
)
≡
2
n
(
mod
p
)
,
{\displaystyle B_{n}^{(-p)}\equiv 2^{n}{\pmod {p}},}
which can be seen as an analog of Fermat's little theorem . Further, the equation
B
x
(
−
n
)
+
B
y
(
−
n
)
=
B
z
(
−
n
)
{\displaystyle B_{x}^{(-n)}+B_{y}^{(-n)}=B_{z}^{(-n)}}
has no solution for integers x , y , z , n > 2; an analog of Fermat's Last Theorem .
Moreover, there is an analogue of Poly-Bernoulli numbers (like Bernoulli numbers and Euler numbers) which is known as Poly-Euler numbers .
See also
References
Arakawa, Tsuneo; Kaneko, Masanobu (1999a), "Multiple zeta values, poly-Bernoulli numbers, and related zeta functions" , Nagoya Mathematical Journal , 153 : 189– 209, doi :10.1017/S0027763000006954 , hdl :2324/20424 , MR 1684557 , S2CID 53476063 .
Arakawa, Tsuneo; Kaneko, Masanobu (1999b), "On poly-Bernoulli numbers", Commentarii Mathematici Universitatis Sancti Pauli , 48 (2): 159– 167, MR 1713681
Brewbaker, Chad (2008), "A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues" , Integers , 8 : A02, 9, MR 2373086 .
Hamahata, Y.; Masubuchi, H. (2007), "Special multi-poly-Bernoulli numbers", Journal of Integer Sequences , 10 (4), Article 07.4.1, Bibcode :2007JIntS..10...41H , MR 2304359 .
Kaneko, Masanobu (1997), "Poly-Bernoulli numbers" , Journal de Théorie des Nombres de Bordeaux , 9 (1): 221– 228, doi :10.5802/jtnb.197 , hdl :2324/21658 , MR 1469669 .