Phosphanides are chemicals containing the [PH2]− anion. This is also known as the phosphino anion or phosphido ligand. The IUPAC name can also be dihydridophosphate(1−).[1]
It can occur as a group phosphanyl -PH2 in organic compounds or ligand called phosphanido, or dihydridophosphato(1−). A related substance has PH2−. Phosphinidene (PH) has phosphorus in a −1 oxidation state.[2]
As a ligand PH2 can either bond to one atom or be in a μ2-bridged ligand across two metal atoms.[3] With transition metals and actinides, bridging is likely unless the metal atom is mostly enclosed in a ligand.
In phosphanides, phosphorus is in the −3 oxidation state. When phosphanide is oxidised, the first step is phosphinite ([H2PO]−). Further oxidation yields phosphonite ([HPO2]2−) and phosphite ([PO3]3−).[4]
The study of phosphine derivatives is unpopular, because they are unstable, poisonous and malodorous.[5]
Another way to produce -PH2 complexes is by hydrolysis of a -P(SiMe3)2 compound with an alcohol, such as methanol.[3]
Yet another way is to remove a hydrogen atom from the phosphine in a phosphine complex by using a strong base.[3]
Properties
When calcium phosphanide is heated, it decomposes by releasing phosphine and yielding the phosphanediide: CaPH. With further heating a binary calcium phosphide is formed.[4] Other compounds may also lose hydrogen as well as phosphine.[6]
Phosphanides can react with CCl4 to substitute Cl for H giving a -PCl2 compound. Similarly CBr4 can produce -PBr2. Also AgBF4 can react to yield -PF2.[7]
Sodium phosphanide can react with ethyl alcohol in a diethyl carbonate solution to yield sodium 2-phosphaethynolate (NaOCP). Na(DME)2OCP is also formed from NaPH2 when reacted with CO in a dimethoxyethane (DME) solution under pressure.[8]
Some derivatives of phosphanides have also been studied where hydrogen is substituted by another group. They include bis(trimethylsilyl)phosphanide, bis (triisopropylsilyl) phosphanide, bis (trimethylsilyl) phosphanide, diphenyl phosphanide.[37][38]
^ abcMont, O. Schmitz-Du; Nagel, F.; Schaal, W. (1958-02-21). "Über einfache und komplexe Schwermetallphosphine und Polyphosphine". Angewandte Chemie (in German). 70 (4): 105. doi:10.1002/ange.19580700407.
^ abSchäfer, H.; Zipfel, J.; Gutekunst, B.; Lemmert, U. (October 1985). "Übergangsmetallphosphidokomplexe, IX. P-funktionelle Heterocyclische Mangan-Phosphor-Vier- und Sechsringkomplexe". Zeitschrift für anorganische und allgemeine Chemie (in German). 529 (10): 157–172. doi:10.1002/zaac.19855291021.
^Becker, G.; Eschbach, B.; Mundt, O.; Reti, M.; Niecke, E.; Issberner, K.; Nieger, M.; Thelen, V.; Nöth, H.; Waldhör, R.; Schmidt, M. (1998). "Bis(1,2-dimethoxyethan-O,O′)lithium-phosphanid, -arsanid und -chlorid – drei neue Vertreter des Bis(1,2-dimethoxyethan-O,O′)lithium-bromid-Typs". Zeitschrift für Anorganische und Allgemeine Chemie. 624 (3): 469–482. doi:10.1002/(SICI)1521-3749(199803)624:3<469::AID-ZAAC469>3.0.CO;2-F.
^ abBhattacharyya, Koyel X.; Dreyfuss, Sébastien; Saffon-Merceron, Nathalie; Mézailles, Nicolas (2016). "P 4 functionalization by hydrides: direct synthesis of P–H bonds". Chemical Communications. 52 (29): 5179–5182. doi:10.1039/C6CC01683A. PMID26997653.
^ abUmbarkar, Shubhangi B.; Sekar, Perumal; Scheer, Manfred (2001-01-01). "Reactivity Study of the P 2 Ligand Complex [{CpCr(CO) 2 } 2 (μ,η 2 -P 2 )]". Phosphorus, Sulfur, and Silicon and the Related Elements. 169 (1): 205–208. doi:10.1080/10426500108546624. S2CID96952262.
^ abcdefBauer, Susanne; Hunger, Cornelia; Bodensteiner, Michael; Ojo, Wilfried-Solo; Cros-Gagneux, Arnaud; Chaudret, Bruno; Nayral, Céline; Delpech, Fabien; Scheer, Manfred (3 November 2014). "Transition-Metal Complexes Containing Parent Phosphine or Phosphinyl Ligands and Their Use as Precursors for Phosphide Nanoparticles". Inorganic Chemistry. 53 (21): 11438–11446. doi:10.1021/ic5012082. PMID25329878.
^ abUecker, G.; Schmitz-DuMont, O. (December 1969). "Dihydrogenphosphide und Dihydrogenphosphidosalze der Übergangsmetalle. II. Bildung von Mangan(II)-dihydrogenphosphid und Kalium-tetra-dihydrogenphosphido-manganat(II)". Zeitschrift für anorganische und allgemeine Chemie (in German). 371 (5–6): 318–324. doi:10.1002/zaac.19693710514.
^ abcDeppisch, Bertold; Schäfer, Hans; Binder, Dieter; Leske, Werner (December 1984). "Übergangsmetallphosphidokomplexe. VIII. Strukturuntersuchungen an Übergangsmetallphosphor-Vier- und Sechsringkomplexen. Die Strukturen von [(CO)4MnPH2]2, [(CO)4MnPH2]3 und [cpNiPH2]3". Zeitschrift für anorganische und allgemeine Chemie (in German). 519 (12): 53–66. doi:10.1002/zaac.19845191206.
^ abFlörke, U., ed. (1996-12-01). "μ -Bromo- μ -phosphido-bis(tetracarbonylmanganese) and di- μ -phosphido-bis(tetracarbonylmanganese). Co-crystallization and disorder". Zeitschrift für Kristallographie – Crystalline Materials. 211 (12): 908–910. doi:10.1524/zkri.1996.211.12.908.
^ abcSchäfer, Hans (August 1980). "Übergangsmetallphosphidokomplexe. IV. Phosphido- und Bistrimethylsilylphosphidokomplexe des Eisens". Zeitschrift für anorganische und allgemeine Chemie (in German). 467 (1): 105–122. doi:10.1002/zaac.19804670113.
^ abcdefghijklmSchäfer, H.; Leske, W. (September 1987). "Übergangsmetallphosphido-Komplexe. XIV. P-funktionelle phosphidoverbrückte Heterozweikern-komplexe mit und ohne Metall- Metall-Bindung; PH2-verbrückte cp(CO)xFe-Derivate". Zeitschrift für anorganische und allgemeine Chemie (in German). 552 (9): 50–68. doi:10.1002/zaac.19875520906.
^Schäfer, H.; Leske, W.; Mattern, G. (February 1988). "Übergangsmetallphosphidokomplexe. XVI. Die Strukturen von zwei offenkettigen, PH2-verbrückten Zweikernkomplexen cp(CO)2Fe(mu-PH2)MLn (MLn = Fe(CO)4, MnMecp(CO)2)". Zeitschrift für anorganische und allgemeine Chemie (in German). 557 (1): 59–68. doi:10.1002/zaac.19885570106.
^ abcdColson, Adam C.; Whitmire, Kenton H. (2010-10-25). "Synthesis, Characterization, and Reactivity of the Heterometallic Dinuclear μ-PH 2 and μ-PPhH Complexes FeMn(CO) 8 (μ-PH 2 ) and FeMn(CO) 8 (μ-PPhH)". Organometallics. 29 (20): 4611–4618. doi:10.1021/om100736m.
^ abSchmitz-DuMont, O.; Uecker, G.; Schaal, W. (October 1969). "Dihydrogenphosphide und Dihydrogenphosphidosalze der Übergangsmetalle. I. Nickel(II)-dihydrogenphosphid und Kalium-tris-[dihydrogen-phosphido]-niccolat (II)". Zeitschrift für anorganische und allgemeine Chemie (in German). 370 (1–2): 67–79. doi:10.1002/zaac.19693700108.
^Schäffr, Hans; Zipfel, Jürgen; Migula, Brigitte; Binder, Dieter (June 1983). "Übergangsmetallphosphidokomplexe. VII. Ringgrößeneffekte bei den NMR-Daten von Übergangsmetallphosphor-Vier- und Sechsringkomplexen". Zeitschrift für anorganische und allgemeine Chemie (in German). 501 (6): 111–120. doi:10.1002/zaac.19835010613.
^Schäfer, H. (December 1979). "Übergangsmetallphosphidokomplexe. II. Phosphido- und Bistrimethylsilylphosphidokomplexe des Nickels". Zeitschrift für anorganische und allgemeine Chemie (in German). 459 (1): 157–169. doi:10.1002/zaac.19794590117.
^ abYao, Shenglai; Brym, Markus; Merz, Klaus; Driess, Matthias (2008-07-01). "Facile Access to a Stable Divalent Germanium Compound with a Terminal PH 2 Group and Related PR 2 Derivatives". Organometallics. 27 (14): 3601–3607. doi:10.1021/om800269f.
^Vogel, Ulf; Sekar, Perumal; Ahlrichs, Reinhart; Huniar, Uwe; Scheer, Manfred (April 2003). "An Unusual Bonding Situation in a Novel Au I -Phosphido Complex with a Planar Au 3 P 3 Framework". European Journal of Inorganic Chemistry. 2003 (8): 1518–2522. doi:10.1002/ejic.200390197.
^ abEbsworth, E.A.V.; McIntosh, A.P.; Schröder, M. (September 1986). "Polynuclear metal complexes incorporating hydrido-phosphido ligands". Journal of Organometallic Chemistry. 312 (2): c41 –c43. doi:10.1016/0022-328X(86)80309-6.
^ abGarcía, M. Esther; Riera, Víctor; Ruiz, Miguel A.; Rueda, M. Teresa; Sáez, David (2002-12-01). "Dimolybdenum and Ditungsten Cyclopentadienyl Carbonyls with Electron-Rich Phosphido Bridges. Synthesis of the Hydrido Phosphido Complexes [M 2 Cp 2 ( μ -H)( μ -PRR')(CO) 4 ] and Unsaturated Bis(phosphido) Complexes [M 2 Cp 2 ( μ -PR 2 )( μ -PR'R' ')(CO) x ] ( x = 1, 2; R, R', R' ' = Et, Cy, t Bu)". Organometallics. 21 (25): 5515–5525. doi:10.1021/om020573f.
^ abHaupt, H.-J.; Krampe, O.; Flörke, U. (May 1996). "Darstellung und Molekülstrukturen von oligofunktionalen Dirheniumcarbonylderivaten aus Dirheniumnonacarbonylphosphan". Zeitschrift für anorganische und allgemeine Chemie (in German). 622 (5): 807–812. doi:10.1002/zaac.19966220510.
^ abcdeBohle, D.Scott; Clark, George R.; Rickard, Clifton E.F.; Roper, Warren R. (August 1990). "Organotransition metal substituted primary phosphines: osmium phosphido (PH2) complexes". Journal of Organometallic Chemistry. 393 (2): 243–285. doi:10.1016/0022-328X(90)80204-D.
^ abcdScott Bohle, D.; Clark, George R.; Rickard, Clifton E.F.; Roper, Warren R.; Taylor, Michael J. (July 1988). "Phosphine (PH3) complexes of ruthenium, osmium and iridium as precursors of terminal phosphido (PH2) complexes and the crystal structure of [Os(μ2-PH2) Cl(CO) (PPh3)2]2 · (C2H2Cl4)4". Journal of Organometallic Chemistry. 348 (3): 385–409. doi:10.1016/0022-328X(88)80421-2.
^ abcdJohnson, Brian F.G.; Lewis, Jack; Nordlander, Ebbe; Raithby, Paul R. (January 1997). "The crystal and molecular structure of [Os6(μ-H)(CO)21(NCMe)(μ-PH2)]". Polyhedron. 16 (19): 3463–3467. doi:10.1016/S0277-5387(97)00060-0.
^Johnson, Brian F. G.; Lewis, Jack; Nordlander, Ebbe; Owen, Steven M.; Raithby, Paul R. (1996). "Systematic synthesis of hexanuclear phosphido-bridged osmium clusters; crystal and molecular structure of [Os 6 (µ-H)(CO) 22 (µ-PH 2 )]". J. Chem. Soc., Dalton Trans. (8): 1567–1571. doi:10.1039/DT9960001567.
^Andrews, Lester; Cho, Han-Gook; Thanthiriwatte, K. Sahan; Dixon, David A. (2017-03-06). "Thorium and Uranium Hydride Phosphorus and Arsenic Bearing Molecules with Single and Double Actinide-Pnictogen and Bridged Agostic Hydrogen Bonds". Inorganic Chemistry. 56 (5): 2949–2957. doi:10.1021/acs.inorgchem.6b03055. PMID28195738.
^Driess, Matthias; Pritzkow, Hans; Skipinski, Markus; Winkler, Uwe (1 October 1998). "Intriguing Tetrasodium Dication Cluster Na 4 2+ Stabilized between Two Silyl(fluorosilyl)phosphanide Shells". Journal of the American Chemical Society. 120 (41): 10774–10775. doi:10.1021/ja9822963.