p -Coumaric acid
Names
Preferred IUPAC name
(2E )-3-(4-Hydroxyphenyl)prop-2-enoic acid
Other names
(E )-3-(4-Hydroxyphenyl)-2-propenoic acid (E )-3-(4-Hydroxyphenyl)acrylic acidpara -Coumaric acid 4-Hydroxycinnamic acid β-(4-Hydroxyphenyl)acrylic acid
Identifiers
2207383
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard
100.116.210
EC Number
2245630
KEGG
UNII
InChI=1S/C9H8O3/c10-8-4-1-7(2-5-8)3-6-9(11)12/h1-6,10H,(H,11,12)/b6-3+
Y Key: NGSWKAQJJWESNS-ZZXKWVIFSA-N
Y InChI=1/C9H8O3/c10-8-4-1-7(2-5-8)3-6-9(11)12/h1-6,10H,(H,11,
12)/b6-3+/f/h11H
InChI=1/C9H8O3/c10-8-4-1-7(2-5-8)3-6-9(11)12/h1-6,10H,(H,11,12)/b6-3+
Key: NGSWKAQJJWESNS-ZZXKWVIFBJ
C1=CC(=CC=C1\C=C\C(=O)O)O
c1cc(ccc1/C=C/C(=O)O)O
Properties
C 9 H 8 O 3
Molar mass
164.160 g·mol−1
Melting point
210 to 213 °C (410 to 415 °F; 483 to 486 K)
Hazards
GHS labelling :
Danger
H301 , H302 , H311 , H314 , H315 , H317 , H319 , H335
P260 , P261 , P264 , P270 , P271 , P272 , P280 , P301+P310 , P301+P312 , P301+P330+P331 , P302+P352 , P303+P361+P353 , P304+P340 , P305+P351+P338 , P310 , P312 , P321 , P322 , P330 , P332+P313 , P333+P313 , P337+P313 , P361 , P362 , P363 , P403+P233 , P405 , P501
Except where otherwise noted, data are given for materials in their
standard state (at 25 °C [77 °F], 100 kPa).
Chemical compound
p -Coumaric acid is an organic compound with the formula HOC6 H4 CH=CHCO2 H. It is one of the three isomers of hydroxycinnamic acid . It is a white solid that is only slightly soluble in water but very soluble in ethanol and diethyl ether .
Natural occurrences
It is a precursor to many natural products, especially lignols , precursors to the woody mass that comprise many plants.[ 1] Of the myriad occurrences, p -coumaric acid can be found in Gnetum cleistostachyum .[ 2]
In food
p -Coumaric acid can be found in a wide variety of edible plants and fungi such as peanuts , navy beans, tomatoes , carrots , basil and garlic .[citation needed ] It is found in wine and vinegar .[ 3] It is also found in barley grain.[ 4]
p -Coumaric acid from pollen is a constituent of honey .[ 5]
Derivatives
p -Coumaric acid glucoside can also be found in commercial breads containing flaxseed .[ 6] Diesters of p -coumaric acid can be found in carnauba wax .
Biosynthesis
It is biosynthesized from cinnamic acid by the action of the P450 -dependent enzyme 4-cinnamic acid hydroxylase (C4H).
→
C
4
H
{\displaystyle {\begin{matrix}{}\\{\xrightarrow {\mathrm {C4H} }}\\{}\end{matrix}}}
It is also produced from L -tyrosine by the action of tyrosine ammonia lyase (TAL).
→
T
A
L
{\displaystyle {\xrightarrow {\mathrm {TAL} }}}
+ NH3 + H+
Biosynthetic building block
p -Coumaric acid is the precursor of 4-ethylphenol produced by the yeast Brettanomyces in wine. The enzyme cinnamate decarboxylase catalyzes the conversion of p -coumaric acid into 4-vinylphenol .[ 7] Vinyl phenol reductase then catalyzes the reduction of 4-vinylphenol to 4-ethylphenol. Coumaric acid is sometimes added to microbiological media , enabling the positive identification of Brettanomyces by smell.
The conversion of p -coumaric acid to 4-ethyphenol by Brettanomyces
cis -p -Coumarate glucosyltransferase is an enzyme that uses uridine diphosphate glucose and cis -p -coumarate to produce 4′-O -β-D -glucosyl-cis -p -coumarate and uridine diphosphate (UDP). This enzyme belongs to the family of glycosyltransferases, specifically the hexosyltransferases.[ 8]
Phloretic acid , found in the rumen of sheep fed with dried grass, is produced by hydrogenation of the 2-propenoic side chain of p -coumaric acid.[ 9]
The enzyme, resveratrol synthase , also known as stilbene synthase, catalyzes the synthesis of resveratrol ultimately from a tetraketide derived from 4-coumaroyl CoA .[ 10]
p -Coumaric acid is a cofactor of photoactive yellow proteins (PYP) , a homologous group of proteins found in many eubacteria.[ 11]
p -Coumaric acid is found as the base moiety of Caleicine , one of many sesquiterpenes in Calea ternifolia .
See also
References
^ Wout Boerjan, John Ralph, Marie Baucher "Lignin Biosynthesis" Annu. Rev. Plant Biol. 2003, vol. 54, pp. 519–46. doi :10.1146/annurev.arplant.54.031902.134938
^ Yao CS, Lin M, Liu X, Wang YH (April 2005). "Stilbene derivatives from Gnetum cleistostachyum". Journal of Asian Natural Products Research . 7 (2): 131– 7. doi :10.1080/10286020310001625102 . PMID 15621615 . S2CID 37661785 .
^ Gálvez MC, Barroso CG, Pérez-Bustamante JA (1994). "Analysis of polyphenolic compounds of different vinegar samples". Zeitschrift für Lebensmittel-Untersuchung und -Forschung . 199 : 29– 31. doi :10.1007/BF01192948 . S2CID 91784893 .
^ Quinde-Axtell Z, Baik BK (December 2006). "Phenolic compounds of barley grain and their implication in food product discoloration". Journal of Agricultural and Food Chemistry . 54 (26): 9978– 84. doi :10.1021/jf060974w . PMID 17177530 .
^ Mao W, Schuler MA, Berenbaum MR (May 2013). "Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera" . Proceedings of the National Academy of Sciences of the United States of America . 110 (22): 8842– 6. Bibcode :2013PNAS..110.8842M . doi :10.1073/pnas.1303884110 . PMC 3670375 . PMID 23630255 .
^ Strandås C, Kamal-Eldin A, Andersson R, Åman P (October 2008). "Phenolic glucosides in bread containing flaxseed". Food Chemistry . 110 (4): 997– 9. doi :10.1016/j.foodchem.2008.02.088 . PMID 26047292 .
^ "Brettanomyces Monitoring by Analysis of 4-ethylphenol and 4-ethylguaiacol" . etslabs.com . Archived from the original on 2008-02-19.
^ Rasmussen S, Rudolph H (1997). "Isolation, purification and characterization of UDP-glucose: cis -p -coumaric acid-β-D -glucosyltransferase from sphagnum fallax". Phytochemistry . 46 (3): 449– 453. doi :10.1016/S0031-9422(97)00337-3 .
^ Chesson A, Stewart CS, Wallace RJ (September 1982). "Influence of plant phenolic acids on growth and cellulolytic activity of rumen bacteria" . Applied and Environmental Microbiology . 44 (3): 597– 603. Bibcode :1982ApEnM..44..597C . doi :10.1128/aem.44.3.597-603.1982 . PMC 242064 . PMID 16346090 .
^ Wang, Chuanhong; Zhi, Shuang; Liu, Changying; Xu, Fengxiang; Zhao, Aichun; Wang, Xiling; Ren, Yanhong; Li, Zhengang; Yu, Maode (2017). "Characterization of Stilbene Synthase Genes in Mulberry (Morus atropurpurea ) and Metabolic Engineering for the Production of Resveratrol in Escherichia coli ". Journal of Agricultural and Food Chemistry . 65 (8): 1659– 1668. doi :10.1021/acs.jafc.6b05212 . PMID 28168876 .
^ Hoff WD, Düx P, Hård K, Devreese B, Nugteren-Roodzant IM, Crielaard W, Boelens R, Kaptein R, van Beeumen J, Hellingwerf KJ (November 1994). "Thiol ester-linked p -coumaric acid as a new photoactive prosthetic group in a protein with rhodopsin-like photochemistry" . Biochemistry . 33 (47): 13959– 62. doi :10.1021/bi00251a001 . PMID 7947803 .
Aglycones
Precursor Monohydroxycinnamic acids (Coumaric acids) Dihydroxycinnamic acids Trihydroxycinnamic acids O -methylated formsothers
Esters
glycoside-likes
Esters of caffeic acid with cyclitols
Glycosides
Tartaric acid estersOther esters with caffeic acid Caffeoyl phenylethanoid glycoside (CPG)
Echinacoside
Calceolarioside A , B , C , F
Chiritoside A , B , C
Cistanoside A , B , C , D , E , F , G , H
Conandroside
Myconoside
Pauoifloside
Plantainoside A
Plantamajoside
Tubuloside B
Verbascoside (Isoverbascoside , 2′-Acetylverbascoside )
Oligomeric forms
Dimers
Diferulic acids (DiFA) : 5,5′-Diferulic acid , 8-O -4′-Diferulic acid , 8,5′-Diferulic acid , 8,5′-DiFA (DC) , 8,5′-DiFA (BF) , 8,8′-Diferulic acid
Trimers Tetramers
Conjugates withcoenzyme A (CoA)