Orthologic trianglesIn geometry, two triangles are said to be orthologic if the perpendiculars from the vertices of one of them to the corresponding sides of the other are concurrent (i.e., they intersect at a single point). This is a symmetric property; that is, if the perpendiculars from the vertices A, B, C of triangle △ABC to the sides EF, FD, DE of triangle △DEF are concurrent then the perpendiculars from the vertices D, E, F of △DEF to the sides BC, CA, AB of △ABC are also concurrent. The points of concurrence are known as the orthology centres of the two triangles.[1][2] Some pairs of orthologic trianglesThe following are some triangles associated with the reference triangle ABC and orthologic with it.[3]
Theorem on orthologic trianglesSondat's theorem states that If two triangles ABC and A'B'C' are perspective and orthologic, then the center of perspective P and the orthologic centers Q and Q' are on the same line perpendicular to the axis of perspectivity [4]: Thm. 1.6 See alsoReferences
|