Class of chemical compounds
The nitridosilicates are chemical compounds that have anions with nitrogen bound to silicon . Counter cations that balance the electric charge are mostly electropositive metals from the alkali metals , alkaline earths or rare earth elements . Silicon and nitrogen have similar electronegativities , so the bond between them is covalent. Nitrogen atoms are arranged around a silicon atom in a tetrahedral arrangement.[ 1]
Related compounds include pnictogenidosilicates :phosphidosilicates , arsenidosilicates and antimonosilicates ; pnictogenidogernamates: phosphidogermanates . By replacing silicon, there are also nitridogermanates , nitridostannates , nitridotantalates and nitridotitanates .
Use
Nitridosilicates are used as host substances for europium in LED phosphors . Examples include CASN (calcium aluminium silicide nitride ) (CaAlSiN3 ), SCASN (SrCaAlSiN3 ) and SCSN (SrCaSiN3 ). These fluoresce red.[ 2]
Production
Nitridosilicates can be made in a solid state reaction by heating silicon nitride with metallic nitrides in a nitrogen atmosphere at over 1300°C. If the mixtures are exposed to oxygen or air, then oxides or oxynitridosilicates are produced instead. Instead of metal nitrides, ammine complexes, amides or imides can be used instead. In place of the highly stable silicon nitride, silicon diimide can be used.[ 3] Carbothermal reduction involves using a metal oxide or carbonate heated with carbon in a nitrogen atmosphere.[ 4]
Properties
The ratio of silicon to nitrogen varies from 1:4 to 7:10 (0.25 to 0.7) with increased condensation, and fewer sites for metals with high silicon content. At a ratio of 3:4 (0.75) there is no longer capacity for metal, as that is silicon nitride .[ 5] The more condensed substances, with lower nitrogen content, have greater number of silicon atoms surrounding the nitrogen. This coordination number can vary from one to four, with the most common being three. The silicon atom always is coordinated by four nitrogen atoms. In the silicates , silicon is surrounded by four oxygen atoms, but each oxygen is only connected to one or two silicon atoms, and only very rarely three. So nitridosilicates can form more diverse structures than the silicates.[ 6]
Nitridosilicates with higher proportion of silicon (more condensed) are more resistant to attack by water and oxygen, and so can be exposed to the atmosphere without decomposition.[ 6] These condensed nitridosilicates are mechanically strong, and resistant to heat, acids and alkalis.[ 1]
SiN4 tetrahedra can be connected to each other via vertices or edges. This differs from SiO4 which only connects via vertices.[ 1]
Use
Nitridosilicates have been used to make abrasives , turbine blades , cutting tools and phosphors.[ 4]
Nitridosilicates
name
formula
formula
weight
crystal
system
space
group
unit cell
volume
density
comments
ref
LiSi2 N3
[ 5]
Li2 SiN2
[ 7]
Li5 SiN3
[ 7]
Li8 SiN4
[ 8]
Li18 Si3 N10
[ 7]
Li21 Si3 N11
I 4
a=9.4584 c=9.5194
antifluorite structure
[ 7]
BeSiN2
[ 9]
MgSiN2
[ 5]
NaSi2 N3
[ 9]
Ca2 Si5 N8
332.64
monoclinic
Cc
a = 14.3280 b = 5.61165 c = 9.69406 β = 112.1484 Z=4
721.92
3.06
Eu orange fluorescence
[ 5] [ 10] [ 4]
CaSiN2
[ 5]
Ca3 SiN3 H
monoclinic
C 2/c
a = 5.236 b = 10.461 c = 16.389 β = 91.182° Z = 8
semiconductor: band gap 3.1 eV
[ 11]
Ca4 SiN4
[ 5]
Ca5 Si2 N6
[ 5]
Ca12 Si4 [SiN4 ]
triclinic
P 1
a 9.0103 b 9.0218 c 13.8252 α 71.053° β 82.738° γ 69.763°
black
[ 12]
Ca16 Si17 N34
[ 5]
CaMg3 SiN4
I 41 /a
[ 13]
Ca5 [Si2 Al2 N8 ]
orthorhombic
Pbcn
a = 9.255 b = 6.140 c = 15.578
[ 14]
LiCa3 Si2N5
monoclinic
C 2/c
a = 5.145 b = 20.380 c = 10.357 β = 91.24°
[ 15]
Li4 Ca3 Si2 N6
288.24
monoclinic
C 2/m
a=5.787 b=9.705 c=5.977 β =90.45
335.7
2.852
[ 5] [ 16]
Li2 CaSi2 N4
[ 5]
Li2 Ca2 Mg2 Si2 N6
[ 5]
Li2 Ca3 MgSi2 N6
[ 5]
CaMg3 SiN4
I 41 /a
a = 11.424 c = 13.445 Z=16
[ 9]
CaAlSiN3
orthorhombic
Cmc 21
Eu yellow fluorescence
[ 17]
CaAlSi4 N7
orthorhombic
Pna 21
a = 11.6819, b = 21.0193, c = 4.9177 Å
[ 18]
Ca4 AlSiN5
orthorhombic
Pna 21
a 11.2058 b 9.0512 c 6.0203
faint red
[ 12]
Ca5 Al2 Si2 N8
orthorhombic
Pbca
a= 9.255 b = 6.140 c = 15.578 Z=4
885.2
3.171
yellow
[ 9] [ 19]
CaScSi4 N7
[ 5]
Manganese silicide dinitride
MnSiN2
orthorhombic
Pna21
a = 5.271, b = 6.521, and c = 5.0706 V=174.26
intense red
[ 8]
Fe2 Si5 N8
364.23
monoclinic
Cc
a= 14.0408 b = 5.32635 c = 9.5913 β = 110.728 Z=4
decompose 1370K; brown
[ 10]
ZnSiN2
[ 9]
SrSiN2
[ 5]
Sr2 Si5 N8
orthorhombic
Pmn 21
a = 5.71006 b = 6.81914 c = 9.33599 Z=2
363.52
3.908
Eu red fluorescence
[ 5] [ 4] [ 20]
SrSi6 N8
[ 5]
SrSi7 N10
[ 18]
Sr5 Si7 P2 N16
920.83
Pnma
a =5.6748 b =28.0367 c =9.5280 Z=4
1522.1
4.018
[ 21]
SrAlSi4 N7
orthorhombic
Pna 21
a = 11.742 b = 21.391 c = 4.966 Z = 8
1247.2
[ 22]
Li2 SrSi2 N4
cubic
a=10.69 Z=12
1220
[ 5] [ 23]
Li4 Sr3 Si2 N6
monoclinic
C 2/m
a = 6.127, b = 9.687, c = 6.220, β = 90.24° Z=2
369.1
3.876
[ 16]
SrBeSi2 N4
p 6 2c
a =4.86082 c =9.42264 Z=2
[ 24]
SrMg3 SiN4
I 41 /a
a = 11.495 c = 13.512 Z=16
[ 9] [ 13]
Sr8 Mg7 Si9 N22
Cm
a 15.280 b 7.4691 c 10.936 β 110.462°
[ 25]
SrAlSiN3
Cmc 21
[ 17]
SrAlSi4 N7
Pna 21
[ 18]
SrScSi4 N7
[ 5]
YScSi4 N6 C
hexagonal
P 63 mc
a =5.9109 c =9.677
[ 26]
CaYSi4 N7
[ 5]
SrYSi4 N7
[ 5]
Ca8 In2 SiN4
orthorhombic
Ibam
a = 12.904 b = 9.688 c = 10.899 Z = 4
metallic
[ 11]
BaSiN2
[ 5]
Ba5 Si2 N6
[ 9]
Ba2 Si5 N8
orthorhombic
Pmn 21
Eu red fluorescence
[ 5] [ 4]
BaSi6 N8
Imm 2
a = 7.9316, b = 9.3437, c = 4.8357, Z = 2
358.38
[ 5] [ 27]
BaSi7 N10
monoclinic
a = 6.8729, b = 6.7129, c = 9.6328, β = 106.269, Z = 2
most condensed
[ 5] [ 28]
Ba6 Si6 N10 O2 (CN2 )
P 6
a = 16.255, c = 5.469, Z = 3
yellow, grown in liquid sodium
[ 29]
BaMg3 SiN4
P 1
a = 3.451 b = 6.069 c = 6.101 α = 85.200 β = 73.697 γ = 73.566° Z=1
[ 30]
Ba2 AlSi5 N9
triclinic
P 1
a = 9.860 b = 10.320 c = 10.346 α = 90.37° β = 118.43° γ = 103.69° Z = 4
[ 31]
Ba5 Si11 Al7 N25
Pnnm
a = 9.5923, b = 21.3991, c = 5.8889 Å Z = 2
with Eu yellow emission
[ 32]
BaSi4 Al3 N9
P 21 /C
a = 5.8465, b = 26.726, c = 5.8386 Å, β = 118.897° and Z = 4
with Eu blue emission
[ 32]
BaScSi4 N7
[ 5]
BaYSi4 N7
[ 5]
LaSi3 N5
[ 5]
La3 Si6 N11
[ 5]
La5 Si3 N9
[ 9]
La7 Si6 N15
[ 9]
Li5 La5 Si4 N12
tetragonal
P 4 b 2
a = 11.043 c = 5.573 Z = 2
[ 33]
calcium lanthanum nitridosilicate
CaLaSiN3
Ca can be substituted by Yb or Eu
[ 34]
CaLaSi4 N7
[ 5]
CeSi3 N5
[ 9]
Ce3 Si6 N11
[ 9]
Ce3 Si5 N9
[ 9]
Ce7 Si6 N15
triclinic
[ 9]
Ce7 Si6 N15
trigonal
[ 9]
Li5 Ce5 Si4 N12
tetragonal
P 4 b 2
a = 10.978 c = 5.514 Z = 2
[ 33]
Pr3 Si6 N11
[ 9]
Pr5 Si3 N9
[ 9]
Pr7 Si6 N15
[ 9]
Ba2 Nd7 Si11 N23
dark blue
[ 35]
Sm3 Si6 M11
[ 9]
Ca3 Sm3 [Si9 N17 ]
cubic
P4_3m
a =7.3950; Z =1
404.4
[ 36]
Eu2 SiN3
Cmca
a = 5.42, b = 10.610, c = 11.629, Z = 8
[ 9] [ 37]
dieuropium penta siliconoctanitride
Eu2 Si5 N8
orthorhombic
Pnm 21
a=5.7094 b=6.8207 c=9.3291 Z=2
363.29
5.087
red
[ 9] [ 38]
EuMg3 SiN4
I 41 /a
a = 11.511 c = 13.552 Z=16
[ 13]
Ca3 Yb3 [Si9 N17 ]
cubic
P4_3m
a=730.20 Z=1
389.3
[ 36]
BaYbSi4 N7
includes NSi4 clusters
[ 9] [ 39]
europium ytterbium tetrasiliconheptanitride
EuYbSi4 N7
hexagonal
P 63 mc
a=5.9822 c=9.7455
302.03
5.887
brown
[ 9] [ 38]
SrYbSi4 N7
[ 9]
EuYbSi4 N7
[ 9]
CaLuSi4 N7
[ 5]
SrLuSi4 N7
[ 5]
BaLuSi4 N7
[ 5]
Pb2 Si5 N8
666.90
orthorhombic
Pmn 21
a = 5.774 b = 6.837 c = 9.350
269.11
6.001
Pb-Pb dumbbells
[ 20]
References
^ a b c Philipp Bielec (27 July 2019). The Ion Exchange Approach - Expanding Elemental Variety in Nitridosilicate Chemistry (PDF) (Thesis).
^ Schubert, E. Fred (3 February 2018). Light-Emitting Diodes (3rd ed.). E. Fred Schubert. ISBN 978-0-9863826-6-6 .
^ Schnick, Wolfgang; Huppertz, Hubert (May 1997). "Nitridosilicates-A Significant Extension of Silicate Chemistry". Chemistry - A European Journal . 3 (5): 679– 683. doi :10.1002/chem.19970030505 .
^ a b c d e Xie, Rong-Jun; Hirosaki, Naoto; Li, Yuanqiang; Takeda, Takashi (21 June 2010). "Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications" . Materials . 3 (6): 3777– 3793. Bibcode :2010Mate....3.3777X . doi :10.3390/ma3063777 . PMC 5521753 . S2CID 18883144 .
^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ten Kate, Otmar M.; Zhang, Zhijun; van Ommen, J. Ruud; Hintzen, H. T. (Bert) (2018). "Dependence of the photoluminescence properties of Eu 2+ doped M–Si–N (M = alkali, alkaline earth or rare earth metal) nitridosilicates on their structure and composition" . Journal of Materials Chemistry C . 6 (21): 5671– 5683. doi :10.1039/C8TC00885J . ISSN 2050-7526 .
^ a b ten Kate, Otmar M.; Zhang, Zhijun; Hintzen, H. T. (Bert) (2017). "On the relations between the bandgap, structure and composition of the M–Si–N (M = alkali, alkaline earth or rare-earth metal) nitridosilicates" . Journal of Materials Chemistry C . 5 (44): 11504– 11514. doi :10.1039/C7TC04259K . ISSN 2050-7526 .
^ a b c d Casas-Cabanas, M.; Santner, H.; Palacín, M.R. (May 2014). "The Li–Si–(O)–N system revisited: Structural characterization of Li21Si3N11 and Li7SiN3O" . Journal of Solid State Chemistry . 213 : 152– 157. Bibcode :2014JSSCh.213..152C . doi :10.1016/j.jssc.2014.02.022 .
^ a b Esmaeilzadeh, Saeid; Hålenius, Ulf; Valldor, Martin (May 2006). "Crystal Growth, Magnetic, and Optical Properties of the Ternary Nitride MnSiN 2". Chemistry of Materials . 18 (11): 2713– 2718. doi :10.1021/cm060382t .
^ a b c d e f g h i j k l m n o p q r s t u v w x Kong, Yuwei; Song, Zhen; Wang, Shuxin; Xia, Zhiguo; Liu, Quanlin (2018-02-19). "The Inductive Effect in Nitridosilicates and Oxysilicates and Its Effects on 5d Energy Levels of Ce 3+" . Inorganic Chemistry . 57 (4): 2320– 2331. doi :10.1021/acs.inorgchem.7b03253 . ISSN 0020-1669 . PMID 29394040 .
^ a b Bielec, Philipp; Janka, Oliver; Block, Theresa; Pöttgen, Rainer; Schnick, Wolfgang (2018-02-23). "Fe 2 Si 5 N 8 : Access to Open-Shell Transition-Metal Nitridosilicates" . Angewandte Chemie International Edition . 57 (9): 2409– 2412. doi :10.1002/anie.201713006 . PMID 29336096 .
^ a b Dickman, Matthew J.; Schwartz, Benjamin V. G.; Latturner, Susan E. (2017-08-07). "Low-Dimensional Nitridosilicates Grown from Ca/Li Flux: Void Metal Ca 8 In 2 SiN 4 and Semiconductor Ca 3 SiN 3 H" . Inorganic Chemistry . 56 (15): 9361– 9368. doi :10.1021/acs.inorgchem.7b01532 . ISSN 0020-1669 . PMID 28749660 .
^ a b Link, Lukas; Niewa, Rainer (2022-05-25). "Diversity in Nitridosilicate Chemistry: The Nitridoalumosilicate Ca 4 (AlSiN 5 ) and the Nitridosilicate Silicide Ca 12 Si 4 [SiN 4 ]" . Zeitschrift für anorganische und allgemeine Chemie . 648 (10). doi :10.1002/zaac.202200004 . ISSN 0044-2313 .
^ a b c Schmiechen, Sebastian; Schneider, Hajnalka; Wagatha, Peter; Hecht, Cora; Schmidt, Peter J.; Schnick, Wolfgang (2014-04-22). "Toward New Phosphors for Application in Illumination-Grade White pc-LEDs: The Nitridomagnesosilicates Ca[Mg 3 SiN 4 ]:Ce 3+ , Sr[Mg 3 SiN 4 ]:Eu 2+ , and Eu[Mg 3 SiN 4 ]" . Chemistry of Materials . 26 (8): 2712– 2719. doi :10.1021/cm500610v . ISSN 0897-4756 .
^ Ottinger, Frank; Cuervo-Reyes, Eduardo; Nesper, Reinhard (May 2010). "Synthesis, Crystal and Electronic Structure of the Nitridoaluminosilicate Ca 5 [Si 2 Al 2 N 8 ]" . Zeitschrift für anorganische und allgemeine Chemie . 636 (6): 1085– 1089. doi :10.1002/zaac.201000046 . ISSN 0044-2313 .
^ Lupart, Saskia; Schnick, Wolfgang (October 2012). "LiCa 3 Si 2 N 5 – A Lithium Nitridosilicate with a [Si 2 N 5 ] 7– Double-Chain" . Zeitschrift für anorganische und allgemeine Chemie . 638 (12– 13): 2015– 2019. doi :10.1002/zaac.201200106 . ISSN 0044-2313 .
^ a b Pagano, Sandro; Lupart, Saskia; Schmiechen, Sebastian; Schnick, Wolfgang (September 2010). "Li4Ca3Si2N6 and Li4Sr3Si2N6 - Quaternary Lithium Nitridosilicates with Isolated [Si2N6]10- Ions" . Zeitschrift für anorganische und allgemeine Chemie . 636 (11): 1907– 1909. doi :10.1002/zaac.201000163 .
^ a b Watanabe, Hiromu; Wada, Hiroshi; Seki, Keiichi; Itou, Masumi; Kijima, Naoto (2008). "Synthetic Method and Luminescence Properties of Sr[sub x]Ca[sub 1−x]AlSiN[sub 3]:Eu[sup 2+] Mixed Nitride Phosphors" . Journal of the Electrochemical Society . 155 (3): F31. doi :10.1149/1.2829880 .
^ a b c Yoshimura, Fumitaka; Yamane, Hisanori; Yamada, Takahiro (2020-01-06). "Synthesis, Crystal Structure, and Luminescence Properties of a White-Light-Emitting Nitride Phosphor, Ca 0.99 Eu 0.01 AlSi 4 N 7" . Inorganic Chemistry . 59 (1): 367– 375. doi :10.1021/acs.inorgchem.9b02609 . ISSN 0020-1669 . PMID 31808685 . S2CID 208744271 .
^ Ottinger, Frank; Cuervo-Reyes, Eduardo; Nesper, Reinhard (May 2010). "Synthesis, Crystal and Electronic Structure of the Nitridoaluminosilicate Ca 5 [Si 2 Al 2 N 8 ]" . Zeitschrift für anorganische und allgemeine Chemie . 636 (6): 1085– 1089. doi :10.1002/zaac.201000046 . ISSN 0044-2313 .
^ a b Bielec, Philipp; Nelson, Ryky; Stoffel, Ralf P.; Eisenburger, Lucien; Günther, Daniel; Henß, Ann-Kathrin; Wright, Jonathan P.; Oeckler, Oliver; Dronskowski, Richard; Schnick, Wolfgang (2019-01-28). "Cationic Pb 2 Dumbbells Stabilized in the Highly Covalent Lead Nitridosilicate Pb 2 Si 5 N 8" . Angewandte Chemie International Edition . 58 (5): 1432– 1436. doi :10.1002/anie.201812457 . ISSN 1433-7851 . PMID 30536686 . S2CID 54473446 .
^ Dialer, Marwin; Pointner, Monika M.; Strobel, Philipp; Schmidt, Peter J.; Schnick, Wolfgang (2023-12-28). "(Dis)Order and Luminescence in Silicon-Rich (Si,P)–N Network Sr 5 Si 7 P 2 N 16 :Eu 2+" . Inorganic Chemistry . doi :10.1021/acs.inorgchem.3c04109 . ISSN 0020-1669 . PMID 38154029 . S2CID 266597393 .
^ Hecht, Cora; Stadler, Florian; Schmidt, Peter J.; auf der Günne, Jörn Schmedt; Baumann, Verena; Schnick, Wolfgang (2009-04-28). "SrAlSi 4 N 7 :Eu 2+ − A Nitridoalumosilicate Phosphor for Warm White Light (pc)LEDs with Edge-Sharing Tetrahedra" . Chemistry of Materials . 21 (8): 1595– 1601. doi :10.1021/cm803231h . ISSN 0897-4756 .
^ Ding, Jianyan; You, Hongpeng; Wang, Yichao; Ma, Bo; Zhou, Xufeng; Ding, Xin; Cao, Yaxin; Chen, Hang; Geng, Wanying; Wang, Yuhua (2018). "Site occupation and energy transfer of Ce 3+ -activated lithium nitridosilicate Li 2 SrSi 2 N 4 with broad-yellow-light-emitting property and excellent thermal stability" . Journal of Materials Chemistry C . 6 (13): 3435– 3444. doi :10.1039/C7TC04397J . ISSN 2050-7526 .
^ Strobel, Philipp; Weiler, Volker; Schmidt, Peter J.; Schnick, Wolfgang (2018-05-17). "Sr[BeSi 2 N 4 ]:Eu 2+ /Ce 3+ and Eu[BeSi 2 N 4 ]: Nontypical Luminescence in Highly Condensed Nitridoberyllosilicates" . Chemistry – A European Journal . 24 (28): 7243– 7249. doi :10.1002/chem.201800912 . ISSN 0947-6539 . PMID 29575174 .
^ Li, Chao; Zheng, Hong-Wei; Wei, Heng-Wei; Su, Jie; Liao, Fu-Hui; Zhang, Zhen-Yi; Xu, Ling; Yang, Zu-Pei; Wang, Xiao-Ming; Jiao, Huan (2018). "Narrow-band blue emitting nitridomagnesosilicate phosphor Sr 8 Mg 7 Si 9 N 22 :Eu 2+ for phosphor-converted LEDs" . Chemical Communications . 54 (82): 11598– 11601. doi :10.1039/C8CC07218C . ISSN 1359-7345 . PMID 30264071 .
^ Yan, Chunpei; Liu, Zhanning; Zhuang, Weidong; Liu, Ronghui; Xing, Xianran; Liu, Yuanhong; Chen, Guantong; Li, Yanfeng; Ma, Xiaole (2017-09-18). "YScSi 4 N 6 C:Ce 3+ —A Broad Cyan-Emitting Phosphor To Weaken the Cyan Cavity in Full-Spectrum White Light-Emitting Diodes" . Inorganic Chemistry . 56 (18): 11087– 11095. doi :10.1021/acs.inorgchem.7b01408 . ISSN 0020-1669 .
^ Stadler, Florian; Schnick, Wolfgang (April 2007). "Das reduzierte Nitridosilicat BaSi6N8" . Zeitschrift für anorganische und allgemeine Chemie (in German). 633 (4): 589– 592. doi :10.1002/zaac.200600356 .
^ Huppertz, Hubert; Schnick, Wolfgang (February 1997). "Edge-sharing SiN 4 Tetrahedra in the Highly Condensed Nitridosilicate BaSi 7 N 10" . Chemistry - A European Journal . 3 (2): 249– 252. doi :10.1002/chem.19970030213 . PMID 24022955 .
^ Pagano, Sandro; Oeckler, Oliver; Schröder, Thorsten; Schnick, Wolfgang (June 2009). "Ba 6 Si 6 N 10 O 2 (CN 2 ) - A Nitridosilicate with a NPO-Zeolite Structure Type Containing Carbodiimide Ions" . European Journal of Inorganic Chemistry . 2009 (18): 2678– 2683. doi :10.1002/ejic.200900157 .
^ Schmiechen, Sebastian; Strobel, Philipp; Hecht, Cora; Reith, Thomas; Siegert, Markus; Schmidt, Peter J.; Huppertz, Petra; Wiechert, Detlef; Schnick, Wolfgang (10 March 2015). "Nitridomagnesosilicate Ba[Mg 3 SiN 4 ]:Eu 2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors". Chemistry of Materials . 27 (5): 1780– 1785. doi :10.1021/cm504604d .
^ Kechele, Juliane A.; Hecht, Cora; Oeckler, Oliver; Schmedt auf der Günne, Jörn; Schmidt, Peter J.; Schnick, Wolfgang (2009-04-14). "Ba 2 AlSi 5 N 9 —A New Host Lattice for Eu 2+ -Doped Luminescent Materials Comprising a Nitridoalumosilicate Framework with Corner- and Edge-Sharing Tetrahedra" . Chemistry of Materials . 21 (7): 1288– 1295. doi :10.1021/cm803233d . ISSN 0897-4756 .
^ a b Hirosaki, Naoto; Takeda, Takashi; Funahashi, Shiro; Xie, Rong-Jun (2014-07-22). "Discovery of New Nitridosilicate Phosphors for Solid State Lighting by the Single-Particle-Diagnosis Approach" . Chemistry of Materials . 26 (14): 4280– 4288. doi :10.1021/cm501866x . ISSN 0897-4756 .
^ a b Lupart, Saskia; Zeuner, Martin; Pagano, Sandro; Schnick, Wolfgang (June 2010). "Chain‐Type Lithium Rare‐Earth Nitridosilicates – Li 5 Ln 5 Si 4 N 12 with Ln = La, Ce" . European Journal of Inorganic Chemistry . 2010 (18): 2636– 2641. doi :10.1002/ejic.201000245 . ISSN 1434-1948 .
^ ten Kate, O M; Hintzen, H T; van der Kolk, E (24 September 2014). "Low energy 4f-5d transitions in lanthanide doped CaLaSiN 3 with low degree of cross-linking between SiN 4 tetrahedra". Journal of Physics: Condensed Matter . 26 (38): 385502. Bibcode :2014JPCM...26L5502T . doi :10.1088/0953-8984/26/38/385502 . PMID 25186054 . S2CID 29879915 .
^ Huppertz, Hubert; Schnick, Wolfgang (1997-12-15). "Ba2Nd7Si11N23—A Nitridosilicate with a Zeolite-Analogous Si–N Structure" . Angewandte Chemie International Edition in English . 36 (23): 2651– 2652. doi :10.1002/anie.199726511 . ISSN 0570-0833 .
^ a b Huppertz, Hubert; Oeckler, Oliver; Lieb, Alexandra; Glaum, Robert; Johrendt, Dirk; Tegel, Marcus; Kaindl, Reinhard; Schnick, Wolfgang (2012-08-27). "Ca 3 Sm 3 [Si 9 N 17 ] and Ca 3 Yb 3 [Si 9 N 17 ] Nitridosilicates with Interpenetrating Nets that Consist of Star-Shaped [N [4] (SiN 3 ) 4 ] Units and [Si 5 N 16 ] Supertetrahedra" . Chemistry - A European Journal . 18 (35): 10857– 10864. doi :10.1002/chem.201200813 . PMID 22829445 .
^ Zeuner, Martin; Pagano, Sandro; Matthes, Philipp; Bichler, Daniel; Johrendt, Dirk; Harmening, Thomas; Pöttgen, Rainer; Schnick, Wolfgang (2009-08-12). "Mixed Valence Europium Nitridosilicate Eu 2 SiN 3" . Journal of the American Chemical Society . 131 (31): 11242– 11248. doi :10.1021/ja9040237 . ISSN 0002-7863 . PMID 19610643 .
^ a b Huppertz, H.; Schnick, W. (1997-12-15). "Eu 2 Si 5 N 8 and EuYbSi 4 N 7 . The First Nitridosilicates with a Divalent Rare Earth Metal" . Acta Crystallographica Section C Crystal Structure Communications . 53 (12): 1751– 1753. Bibcode :1997AcCrC..53.1751H . doi :10.1107/S0108270197008767 . ISSN 0108-2701 .
^ Huppertz, Hubert; Schnick, Wolfgang (1996-09-20). "BaYbSi4N7—Unexpected Structural Possibilities in Nitridosilicates" . Angewandte Chemie International Edition in English . 35 (17): 1983– 1984. doi :10.1002/anie.199619831 . ISSN 0570-0833 .
Salts and covalent derivatives of the
silicide ion
SiH4 +H
He
LiSi
Be2 Si
SiB3 SiB6 +B
SiC +C
Si3 N4 -N +N
SiO2
SiF4
Ne
NaSi
Mg2 Si
Al
Si4−
SiP, SiP2 -P +P
SiS2 -S
SiCl4
Ar
KSi
CaSi CaSi2
ScSi Sc5 Si3 Sc2 Si3 Sc5 Si4
TiSi TiSi2
V3 Si V5 Si3 , V6 Si5 , VSi2 , V6 Si5
Cr3 Si Cr5 Si3 , CrSi, CrSi2
MnSi , MnSi2 , Mn9 Si2 , Mn3 Si, Mn5 Si3 , Mn11 Si9
FeSi2 FeSi Fe5 Si3 Fe2 Si Fe3 Si
CoSi , CoSi2 , Co2 Si , Co3 Si
NiSi , more…
Cu17 Si3 , Cu56 Si11 , Cu5 Si, Cu33 Si7 , Cu4 Si, Cu19 Si6 , Cu3 Si, Cu87 Si13
Zn
Ga
GeSi +Ge
SiAs, SiAs2 -As +As
SiSe2 SiSe
SiBr4
Kr
RbSi
SrSi2
YSi Y5 Si3 , Y5 Si4 , Y3 Si5 , YSi1.4
ZrSi Zr5 Si3 , Zr5 Si4 , ZrSi2 , Zr3 Si2 , Zr2 Si, Zr3 Si
Nb4 Si Nb5 Si3
MoSi2 Mo3 Si Mo5 Si3
Tc
RuSi Ru2 Si, Ru4 Si3 , Ru2 Si3
RhSi Rh2 Si, Rh5 Si3 , Rh3 Si2 , Rh20 Si13
PdSi Pd5 Si, Pd9 Si2 , Pd3 Si, Pd2 Si
Ag
Cd
In
Sn
Sb
TeSi2 Te2 Si3
SiI4
Xe
CsSi
Ba2 Si BaSi2 , Ba5 Si3 Ba3 Si4
*
Lu5 Si3
HfSi Hf2 Si, Hf3 Si2 , Hf5 Si4 , HfSi2
Ta9 Si2 , Ta3 Si, Ta5 Si3
WSi2 W5 Si3
ReSi Re2 Si, ReSi1.8 Re5 Si3
OsSi
IrSi
PtSi
Au
Hg
Tl
Pb
Bi
Po
At
Rn
Fr
Ra
**
Lr
Rf
Db
Sg
Bh
Hs
Mt
Ds
Rg
Cn
Nh
Fl
Mc
Lv
Ts
Og
*
LaSi2 La5 Si3 , La3 Si2 , La5 Si4 , LaSi
CeSi2 Ce5 Si3 , Ce3 Si2 , Ce5 Si4 , CeSi , Ce3 Si5
PrSi2 Pr5 Si3 , Pr3 Si2 , Pr5 Si4 , PrSi
NdSi Nd5 Si3 , Nd5 Si4 , Nd5 Si3 , Nd3 Si4 , Nd2 Si3 , NdSix
Pm
SmSi2 Sm5 Si4 , Sm5 Si3 , SmSi, Sm3 Si5
Eu?
GdSi2 Gd5 Si3 , Gd5 Si4 , GdSi
TbSi2 SiTb, Si4 Tb5 , Si3 Tb5
DySi2 DySi
HoSi2 Ho5 Si3 , Ho5 Si4 , HoSi, Ho4 Si5
ErSi2 Er5 Si3 , Er5 Si4 , ErSi
Tm?
YbSi Si1.8 Yb, Si5 Yb3 , Si4 Yb3 , Si4 Yb5 , Si3 Yb5
**
Ac
ThSi
PaSi
USi2
NpSi2
PuSi
Am
Cm
Bk
Cf
Es
Fm
Md
No