Nickel tungstate has no commercial uses. It has been examined as a photocatalyst, in humidity sensors, and in dielectric resonators. It is also considered as a "promising" cathode material for asymmetric supercapacitors.[1][12]
Other compounds
Nickel tungstate forms compounds with ammonia, such as NiWO4·2NH3·H2O which are cyan crystals,[13] NiWO4·4NH3 which are green crystals,[14] NiWO4·5NH3·H2O as dark blue crystals[13] or anhydrous NiWO4·6NH3 which is crystalline purple, while the octahydrate of hexamine is dark blue.[14]
^J.M. Quintana-Melgoza, J. Cruz-Reyes, M. Avalos-Borja: Synthesis and characterization of NiWO4 crystals. In: Materials Letters. 47, 2001, S. 314, doi:10.1016/S0167-577X(00)00272-X.
^Mark Ladd, Rex Palmer (2014), [[1], p. 277, at Google BooksStructure Determination by X-ray Crystallography Analysis by X-rays and Neutrons] (in German), Springer Science & Business Media, p. 277, ISBN978-1-4614-3954-7{{citation}}: Check |url= value (help)CS1 maint: date and year (link)
^C. Wilkinson, Μ. J. Sprague: The magnetic structures of NiWO4 and CoWO4. In: Zeitschrift für Kristallographie - Crystalline Materials. 145, 1977, doi:10.1524/zkri.1977.145.16.96.
^Alexei Kuzmin, Aleksandr Kalinko, Robert Evarestov: First-principles LCAO study of phonons in NiWO4. In: Open Physics. 9, 2011, doi:10.2478/s11534-010-0091-z.