The electron scattering factor has units of length, as is typical for the scattering factor, unlike the X-ray form factor, which is usually presented in dimensionless units. To perform a one-to-one comparison between the electron and X-ray form factors in the same units, the X-ray form factor should be multiplied by the square root of the Thomson cross section, where is the classical electron radius, to convert it back to a unit of length.
The Mott–Bethe formula was originally derived for free atoms, and is rigorously true provided the X-ray scattering form factor is known exactly. However, in solids, the accuracy of the Mott–Bethe formula is best for large values of ( Å−1) because the distribution of the charge density at smaller (i.e. long distances) can deviate from the atomic distribution of electrons due the chemical bonds between atoms in a solid.[2] For smaller values of , can be determined from tabulated values, such as those in the International Tables for Crystallography using (non)relativistic Hartree–Fock calculations,[1][6] or other numerical parameterizations of the calculated charge distribution of atoms.[2]