In particular, the category of -points of , that is, , is the category of G-bundles over X.
Similarly, can also be defined when the curve X is over the field of complex numbers. Roughly, in the complex case, one can define as the quotient stack of the space of holomorphic connections on X by the gauge group. Replacing the quotient stack (which is not a topological space) by a homotopy quotient (which is a topological space) gives the homotopy type of .
In the finite field case, it is not common to define the homotopy type of . But one can still define a (smooth) cohomology and homology of .
Basic properties
It is known that is a smooth stack of dimension where is the genus of X. It is not of finite type but locally of finite type; one thus usually uses a stratification by open substacks of finite type (cf. the Harder–Narasimhan stratification), also for parahoric G over curve X see [2] and for G only a flat group scheme of finite type over X see.[3]
If G is a split reductive group, then the set of connected components is in a natural bijection with the fundamental group .[4]
A priori, neither left nor right side in the formula converges. Thus, the formula states that the two sides converge to finite numbers and that those numbers coincide.
^Arasteh Rad, E.; Hartl, Urs (2021), "Uniformizing the moduli stacks of global G-shtukas", International Mathematics Research Notices (21): 16121–16192, arXiv:1302.6351, doi:10.1093/imrn/rnz223, MR4338216; see Theorem 2.5
J. Heinloth, A.H.W. Schmitt, The Cohomology Ring of Moduli Stacks of Principal Bundles over Curves, 2010 preprint, available at http://www.uni-essen.de/~hm0002/.