Transposable elements are elements that can move about or propagate within the genome, and are the major constituents of the eukaryotic mobilome.[4] Transposable elements can be regarded as genetic parasites because they exploit the host cell'stranscription and translation mechanisms to extract and insert themselves in different parts of the genome, regardless of the phenotypic effect on the host.[6]
While transposable elements are also found in prokaryotic genomes,[14] the most common mobile genetic elements in the prokaryotic genome are plasmids and prophages.[4]
Plasmids and prophages can move between genomes through bacterial conjugation, allowing horizontal gene transfer.[15] Plasmids often carry genes that are responsible for bacterial antibiotic resistance; as these plasmids replicate and pass from one genome to another, the whole bacterial population can quickly adapt to the antibiotic.[16][17] Prophages can loop out of bacterial chromosomes to produce bacteriophages that go on to infect other bacteria with the prophages; this allows prophages to propagate quickly among the bacterial population, to the harm of the bacterial host.[13]
Mobilome in viruses
Discovered in 2008 in a strain of Acanthamoeba castellanii mimivirus,[18]virophages are an element of the virus mobilome.[5] Virophages are viruses that replicate only when host cells are co-infected with helper viruses.[19] Following co-infection, helper viruses exploit the host cell's transcription/translation machinery to produce their own machinery; virophages replicate through the machinery of either the host cell or the viruses.[19] The replication of virophages can negatively impact the replication of helper viruses.[18][20]
^Hurst GD, Werren JH (August 2001). "The role of selfish genetic elements in eukaryotic evolution". Nature Reviews. Genetics. 2 (8): 597–606. doi:10.1038/35084545. PMID11483984. S2CID2715605.
^Toussaint A, Merlin C (January 2002). "Mobile elements as a combination of functional modules". Plasmid. 47 (1): 26–35. doi:10.1006/plas.2001.1552. PMID11798283.
^Laski FA, Rio DC, Rubin GM (January 1986). "Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing". Cell. 44 (1): 7–19. doi:10.1016/0092-8674(86)90480-0. PMID3000622. S2CID18364777.
^ abBertani G (1953-01-01). "Lysogenic versus lytic cycle of phage multiplication". Cold Spring Harbor Symposia on Quantitative Biology. 18: 65–70. doi:10.1101/SQB.1953.018.01.014. PMID13168970.
^Campbell A, Berg DE, Botstein D, Lederberg EM, Novick RP, Starlinger P, Szybalski W (March 1979). "Nomenclature of transposable elements in prokaryotes". Gene. 5 (3): 197–206. doi:10.1016/0378-1119(79)90078-7. PMID467979.