Minicircles are small (~4kb) circular plasmid derivatives that have been freed from all prokaryoticvector parts. They have been applied as transgene carriers for the genetic modification of mammalian cells, with the advantage that, since they contain no bacterial DNA sequences, they are less likely to be perceived as foreign and destroyed. (Typical transgene delivery methods involve plasmids, which contain foreign DNA.) The smaller size of minicircles also extends their cloning capacity and facilitates their delivery into cells.
Their preparation usually follows a two-step procedure:[4][5]
production of a 'parental plasmid' (bacterial plasmid with eukaryotic inserts) in E. coli
induction of a site-specific recombinase at the end of this process but still in bacteria. These steps are followed by the
excision of prokaryotic vector parts via two recombinase-target sequences at both ends of the insert
recovery of the resulting minicircle (vehicle for the highly efficient modification of the recipient cell) and the miniplasmid by capillary gel electrophoresis (CGE)
The purified minicircle can be transferred into the recipient cell by transfection or lipofection and into a differentiated tissue by, for instance, jet injection.
Conventional minicircles lack an origin of replication, so they do not replicate within the target cells and the encoded genes will disappear as the cell divides (which can be either an advantage or disadvantage depending on whether the application demands persistent or transient expression). A novel addition to the field are nonviral self-replicating minicircles, which owe this property to the presence of a S/MAR-Element. Self-replicating minicircles hold great promise for the systematic modification of stem cells and will significantly extend the potential of their plasmidal precursor forms ("parental plasmids"), the more as the principal feasibility of such an approach has amply been demonstrated for their plasmidal precursor forms.[6][7][8][9]
See also
Episomes – Type of plasmidPages displaying short descriptions of redirect targets
^Nehlsen, K., Broll S., Bode, J. (2006). "Replicating minicircles: Generation of nonviral episomes for the efficient modification of dividing cells". Gene Ther. Mol. Biol. 10: 233–244.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Broll, S., Oumard A., Hahn K., Schambach A, Bode, J. . (2010). "Minicircle Performance Depending on S/MAR-Nuclear Matrix Interactions". J. Mol. Biol. 395 (5): 950–965. doi:10.1016/j.jmb.2009.11.066. PMID20004666.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Argyros, O., Wong SP., Fedonidis C.; et al. (2011). "Development of S/MAR minicircles for enhanced and persistent transgene expression in the mouse liver". J. Mol. Med. 89 (5): 515–529. doi:10.1007/s00109-010-0713-3. PMID21301798. S2CID23986907.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Heinz, N, Broll S, Schleef M, Baum C, Bode J (2012). "Filling a gap: S/MAR-based replicating minicircles". CliniBook - Nonviral Platform; Clinigene Network: 271–277.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Nehlsen, Kristina; Broll, Sandra; Kandimalla, Raju; Heinz, Niels; Heine, Markus; Binius, Stefanie; Schambach, Axel; Bode, Jürgen (5 April 2013). "Replicating Minicircles: Overcoming the Limitations of Transient and Stable Expression Systems". In Schleef, Martin (ed.). Minicircle and Miniplasmid DNA Vectors: The Future of Nonviral and Viral Gene Transfer. Wiley‐VCH Verlag GmbH & Co. KGaA. pp. 115–162. doi:10.1002/9783527670420.ch8. ISBN9783527670420.