From 1989 to 1990 he collaborated with Vladimir Voevodsky on -groupoids, following the proposal made by Alexander Grothendieck in Esquisse d'un Programme. In 1990 Voevodsky and Kapranov published “-Groupoids as a Model for a Homotopy Category”,[3] in which they claimed to provide a rigorous mathematical formulation and a logically valid proof of Grothendieck's idea connecting two classes of mathematical objects: -groupoids and homotopy types. In October 1998, Carlos Simpson published on arXiv the article “Homotopy Types of Strict 3-groupoids”,[4] which argued that the main result of the “-groupoids” paper, published by Kapranov and Voevodsky in 1990, is false. It was not until 2013 Voevodsky convinced himself that Carlos Simpson's article is correct.[5] Kapranov was also involved in the beginning of Voevodsky's program for the development of motivic cohomology.
With Israel Gelfand and Andrei Zelevinsky, Kapranov investigated generalized Euler integrals, -hypergeometric functions, -discriminants, and hyperdeterminants, and authored Discriminants, Resultants, and Multidimensional Determinants in 1994.[6][7][8][9]
According to Gelfand, Kapranov, and Zelevinsky:
... in an 1848 note on the resultant, Cayley ... laid out the foundations of homological algebra. The place of discriminants in the general theory of hypergeometric functions is similar to the place of quasi-classical approximation in quantum mechanics. ... The relation between differential operators and their highest symbols is the mathematical counterpart of the relation between quantum and classical mechanics; so we can say that hypergeometric functions provide a "quantization" of discriminants.[10]
In 1995 Kapranov provided a framework for a Langlands program for higher-dimensional schemes,[11] and with, Victor Ginzburg and Éric Vasserot, extended the "Geometric Langlands Conjecture" from algebraic curves to algebraic surfaces.
^Gelfand, Israel M.; Kapranov, Mikhail M.; Zelevinsky, Andrei V. (1994). "A-Discriminants". Discriminants, Resultants, and Multidimensional Determinants. pp. 271–296. doi:10.1007/978-0-8176-4771-1_10. ISBN978-0-8176-4770-4.
^Gelfand, Israel M.; Kapranov, Mikhail M.; Zelevinsky, Andrei V. (1994). "Hyperdeterminants". Discriminants, Resultants, and Multidimensional Determinants. pp. 444–479. doi:10.1007/978-0-8176-4771-1_15. ISBN978-0-8176-4770-4.
^Gelfand, Israel M.; Kapranov, Mikhail; Zelevinsky, Andrei (2008-04-16). "Preface". Discriminants, Resultants, and Multidimensional Determinants. Springer. p. ix. ISBN9780817647704. The note mentioned in the quotation is: Cayley, Arthur (1848). "On the theory of elimination". Cambridge and Dublin Mathematical Journal (3): 116–120.
^Kapranov, Mikhail (1995). "Analogies between the Langlands correspondence and topological quantum field theory". In Gnidikin, S.; Lepowsky, J.; Wilson, R. L. (eds.). Functional Analysis on the Eve of the 21st century. Birkhäuser. pp. 119–151.
^Kapranov, Mikhail (1998). "Operads and algebraic geometry". Doc. Math. (Bielefeld) Extra Vol. ICM Berlin, 1998, vol. II. pp. 277–286.